Please use this identifier to cite or link to this item:
http://hdl.handle.net/10397/107980
Title: | PEMRC : a positive enhanced machine reading comprehension method for few-shot named entity recognition in biomedical domain | Authors: | Dong, Y Li, D Gu, J Qian, L Zhou, G |
Issue Date: | 2024 | Source: | Communications in computer and information science, 2024, v. 1993, p. 22-35 | Abstract: | In this paper, we propose a simple and effective few-shot named entity recognition (NER) method for biomedical domain, called PEMRC (Positive Enhanced Machine Reading Comprehension). PEMRC is based on the idea of using machine reading comprehension reading comprehension (MRC) framework to perfome few-shot NER and fully exploit the prior knowledge implied in the label information. On one hand, we design three different query templates to better induce knowledge from pre-trained language models (PLMs). On the other hand, we design a positive enhanced loss function to improve the model’s accuracy in identifying the start and end positions of entities under low-resources scenarios. Extensive experimental results on eight benchmark datasets in biomedical domain show that PEMRC significantly improves the performance of few-shot NER. | Keywords: | Biomedical Domain Few-shot Named Entity Recognition Machine Reading Comprehension |
Publisher: | Springer | Journal: | Communications in computer and information science | ISSN: | 1865-0929 | EISSN: | 1865-0937 | DOI: | 10.1007/978-981-99-9864-7_2 | Description: | 9th China Health Information Processing Conference, CHIP 2023, Hangzhou, China, October 27-29, 2023, | Rights: | © The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024 This version of the proceeding paper has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use(https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms), but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: https://doi.org/10.1007/978-981-99-9864-7_2. |
Appears in Collections: | Conference Paper |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Dong_PEMRC_Positive_Enhanced.pdf | Pre-Published version | 914.24 kB | Adobe PDF | View/Open |
Page views
88
Citations as of Apr 14, 2025
Downloads
3
Citations as of Apr 14, 2025

Google ScholarTM
Check
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.