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Abstract. In this paper, we propose a simple and effective few-shot
named entity recognition(NER) method for biomedical domain, called
PEMRC(PositiveEnhancedMachineReadingComprehension). PEMRC
is based on the idea of using machine reading comprehension reading
comprehension (MRC) framework to perfome few-shot NER and fully
exploit the prior knowledge implied in the label information. On one
hand, we design three different query templates to better induce kon-
wledge from pre-trained language models(PLMs). On the other hand,
we design a positive enhanced loss function to improve the model’s ac-
curacy in identifying the start and end positions of entities under low-
resources scenarios. Extensive experimental results on eight benchmark
datasets in biomedical domain show that PEMRC significantly improves
the performance of few-shot NER.

Keywords: Few-shot Named Entity Recognition · Machine Reading
Comprehension · Biomedical Domain

1 Introduction

NER is a fundamental task in information extraction, which aims to identify text
segments according to predefined entity categories. Current methods use neu-
ral network approaches [3, 14, 25] to solve the NER task. However, neural-based
methods require a large amount of annotated data to achieve good performance,
and data annotation requires rich domain expertise. Due to the high complex-
ity in the biomedical expertise, which poses challenges for biomedical NER in
low-resource scenarios. Recently, few-shot NER [4, 5, 7, 17, 26] has received wide
attention.

The current mainstream method for few-shot named entity recognition is
metric learning based on Similarity Learning. Similarity-based metric learning
methods [5, 24, 26] make the distance between entities of the same class smaller
and the distance between entities of different types larger by learning a metric
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space. However, the entity and non-entity clustering information learned by this
similarity metric function in the source domain cannot be well transferred to
the task in the target domain. At the same time, the tokens of other entity
types in the source domain is uniformly encoded as non-entities, reducing the
expressiveness of the model.

Prompt Learning method can achieve the consistency of upstream and down-
stream tasks by designing prompt templates and label words. The method pro-
posed by [4] solves this problem by scoring. By incorporating distinct label words
in both the source and target domains, the prompt-based approach effectively
mitigates discrepancies arising from inconsistent training objectives during pre-
training and fine-tuning. Moreover, its well-crafted template design facilitates
information induction within the pre-trained language model. However, prompt
learning cannot design templates for token-level tasks, and the high complexity
caused by enumerating all spans is unacceptable.

In order to deal with the above problems, this paper introduces the method
of Machine Reading Comprehension (MRC) [16]. We adopt a span extraction
machine reading comprehension method, which can unify upstream and down-
stream tasks by designing task-specific queries on upstream and downstream
tasks. Compared with prompt learning, machine reading comprehension can ef-
fectively reduce the complexity of training and inference. In order to further uti-
lize the knowledge in the pre-trained language model, we design three different
types of query templates and conduct extensive experiments. To our knowledge,
we are the first to introduce the machine reading comprehension method into
the few shot named entity recognition in the biomedical domain.

2 Related Work

2.1 Few-shot NER

In this section, we review two types of methods for few-shot NER: similarity-
based metric learning and prompt learning.

Similarity-Based Metric Learning Similarity based approach is a com-
mon solution in few-shot named entity recognition. The tokens are classfied by
assessing the similarity between the entity type representation in the support
set and tokens in the test set. The few shot named entity recognition primarily
relies on metric learning. Currently, there are two main approaches to metric
learning: the prototype network [7, 10, 23] and contrastive learning[5, 11].

The method based on the prototype network learns a metric space that en-
compasses a class of data around a single type prototype representation, enabling
classification into the nearest class by calculating the distance between instance
representation and class prototype during inference.

[26] proposed a Nearest Neighbor (NN) classification method which divides
the test set token into categories based on comparing distances with support set
tokens. Contrastive learning employs Distance metric function(such as Euclidean
distance) and relative entropy (Kullback-Leibler Divergence, KLD) to design
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various contrastive methods aiming to narrow distances between tokens of the
same category while pushing away tokens from different categories for improved
token representation.

Prompt Learning Prompt learning originates from GPT [19, 1] (Gener-
ative Pre-training Transformer) models and has been widely used in few-shot
learning. Prompt learning organizes the downstream task into a cloze task,
and with excellent template and label word design, prompt learning effectively
bridges the gap between pre-training and fine-tuning. [20, 21] used prompt learn-
ing in sentence-level tasks and achieved good results.

The performance of the model can be effectively enhanced by designing
prompt templates. [20, 21] employ human-crafted templates for text classifi-
cation tasks. [22] utilize a gradient-based method to search for discrete tem-
plates. [27, 8, 22] generate discrete prompt templates using pre-trained generative
models. Meanwhile, [15] adopt continuous prompt templates for classification
and generation tasks, thereby avoiding the necessity for intricate template de-
sign.Additionally, [9] propose P-Tuning, which involves incorporating learnable
continuous prompt into discrete prompt templates.

[4] employed a template-based approach in few-shot Named Entity Recog-
nition. In this methodology, the original sentence is fed into the encoder, while
the prompt template and all text spans within the sentence are combined in
the decoder. The amalgamated templates are evaluated based on loss. However,
this exhaustive enumeration of all spans introduces significant complexity to the
method. To address these limitations, [17] proposed an innovative template-free
approach that eliminates intricate template design altogether. This alternative
method restructures the task as an entity-oriented language model task by pre-
dicting label words corresponding to tokens at respective positions.

2.2 Few-shot NER in Biomedical Domain

The study conducted by [18] introduced task hardness information based on [13]
to enhance transfer learning in biomedical domain for few-shot named entity
recognition tasks. MetaNER[13], which adopts a multi-task learning framework,
employs an adversarial training strategy to obtain a more robust, generalizable,
and transferable representation method for named entity recognition. Addition-
ally, [13] utilizes a meta-learning training approach that enables it to perform
effectively in low resources scenarios.

3 Problem Definition

We adopt the task setup from [5] (as depicted in Figure 1 below). Amongst
the four named entity recognition tasks (Disease, Chem/Drug, Gene/Protein,
Species), we select three tasks (e.g., Disease, Chem/Drug, Gene/Protein) as
source tasks with rich resources. The remaining task served as a low-resource
target task (e.g., Species). For this target task, we employ a model pre-trained
on the standard training set Xtr lines of the source tasks and fine-tune it using
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the support set Xsupp of the target task. The support set is generated by sam-
pling instances from the training set in the target task. Finally, evaluation was
conducted on the standard test set Xtest of that particular target task.

Fig. 1. Task Description.

4 Methodology

The proposed method utilizes a span-extraction approach for machine reading
comprehension and incorporates a loss function that focuses on positive tokens.
The methodology outlined in this section comprises four components: model
architecture, query template design, loss function formulation, and training pro-
cess implementation. We will present our approach sequentially in the subsequent
sections.

4.1 Model Framework

Given the input X = {x1, x2, x3, ..., xn}, we concatenate it with the query Q =
{q1, q2, q3, ..., qm} to obtain the model input. Then we feed it into the pre-trained
model[12] to encode it and obtain the representation H, as shown in equation 1.

H(ecls, e1, e2, ..., em+n, esep) = PLM([CLS], q1, q2, ..., qm, x1, x2, ..., xn, [SEP ])
(1)

We apply a dropout layer to randomly drop the representation H twice,
obtaining the representation Hstart for predicting the start position and the
representation Hend for predicting the end position, as shown in equation 2.

Hstart = Dropout(H), Hend = Dropout(H) (2)

Start position prediction For the obtained representation Hstart , we feed
it into a classifier FFN to get a score matrix S ∈ R(m+n)×2, and then apply
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softmax to get a probability matrix P ∈ R(m+n)×2. Finally, we select the index
with the highest probability as its prediction label Ŷstart. Regarding the obtained
labels, ’1’ signifies that the current token marks the start of an entity, and ’0’
indicates that the current token does not mark the start of an entity, as shown
in equation 3 and equation 4.

Pstart = Softmax(FFN(Hstart)) ∈ R(m+n)×2 (3)

Ŷstart = Argmax(Pstart) ∈ (0, 1) (4)

End position prediction The prediction process for the end position is the
same as that for the start position, except that we use the representation Hend

to obtain the probability matrix Pend.

4.2 Construction of Queries

In prompt learning, designing prompt template can effectively induce prior
knowledge in pre-trained language models. Taking inspiration from prompt learn-
ing’s template design [15,16,20,21], we construct discrete, continuous, and hybrid
query templates respectively.

The discrete query template is manually crafted while learnable vectors of
varying lengths are employed as continuous query templates without any prior
knowledge. In hybrid queries, entity type identifiers, such as disease, are substi-
tuted with continuous learnable vectors. The hybrid template incorporates some
prior knowledge(discrete query) but excludes entity label information. Examples
of these three types of query templates are provided in Table 1.

Table 1. An examples of three query templates.

Query Type Query Example

Discrete Query Find disease entities in the next sentence.
Continuous Query v1 v2 v3 v4 v5 v6 v7.
Hybrid Query Find v1 entities in the next sentence.

The expression ”v1-v7” denotes a learnable vector, akin to the continous
prompt template employed in prompt learning. The ”[unused]” symbols are
utilized as learnable vectors to seamlessly integrate into the input during the
implementation.

4.3 Loss Function Formulation

In the context of machine reading comprehension models, it is a common prac-
tice to compute the sequence loss ζseq by applying cross-entropy between the
probability matrix P representing start and end positions, and the label Y . The
formula is shown in equation 5 below.
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ζseq = CrossEntropy(Pstart, Ystart) + CrossEntropy(Pend, Yend) (5)

To improve the accuracy of the model in identifying the start and end po-
sitions of entities, we augment the loss of gold labeled tokens, namely positive
enhanced loss. The objective is for the model to acquire more information about
entity head and tail tokens. The loss function can be defined as equation 6: where
Ystart p represents a positive token with its starting position, Pstart p corresponds
to the token probability matrix of that positive token; likewise for Pend p and
Yend p.

ζpos = CrossEntropy(Pstart p, Ystart p) + CrossEntropy(Pend p, Yend p) (6)

We combine these two functions into ultimate loss function as equation 7:

ζfinal = ζ + ζpos (7)

4.4 Training Process

The BioBERTmodel serves as the base model F and is trained on a rich resources
training set Xtr. At this stage, we do not incorporate a positive enhanced loss
Ltr. Subsequently, We then fine-tune model with positive enhanced loss Lsupp

on a few-shot support set Xsupp. Training on a support set may lead to severe
overfitting, we maintain a fixed number of training epochs on the support set
throughout the process. The algorithmic details regarding the model’s training
procedure are elucidated in Algorithm 1.

Algorithm 1: Training and Fine Tuning

Require: Training Data Xtr, Support Data Xsupp,
Train loss function Ltr, Finetune loss function Lsupp, Model F
1 epoch = num epoches //initialize fixed nums epoch
2 // training in source domain
3 for sampled(w/o replacement) minibatch X in Xtr do
4 Ltr = F (X) // Ltr without ζpos
5 update F by backpropagation to reduce Ltr

6 end for
7 Fsource ← F

8 // finetuning to target domain
9 While epoch >0 do
10 for sampled(w/o replacement) minibatch x in Xsupp do
11 Lsupp = Fsource(x) // Lsupp with ζpos
12 update Fsource by backpropagation to reduce Lsupp

13 end for
14 epoch ← epoch-1
15 end while
16 Ftarget ← Fsource

17 return Ftarget
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5 Experiment

5.1 Datasets

The benchmark NER corpora preprocessed by BioBERT[12] are utilized in this
study. We have conducted an analysis of entity counts in both the training and
test sets within the corpus, with the statistical findings presented in Table 2
below.

Table 2. Corpus Statistic

Task Corpus
Num of Entities

Train Test

Disease
NCBI 5,145 960
BC5CDR 9,385 9,809

Drug/Chem
BC5CDR 9,385 9,593
BC4CHEMD 29,478 25,346

Gene/Protein
JNLPBA 32,178 6,241
BC2GM 15,197 6,325

Species
LINNAEUS 2,119 1,433
S800 2,557 767

5.2 Sampling Strategy

The previous sampling has primarily employed two predominant methods, namely
the N-way K-shot[6] sampling method and the precision sampling [2, 4, 17] method.
Both of these methods are instance-oriented samplings that select a specific
number of entities randomly using different strategies. However, in real-world
scenarios, inputs do not exist solely as instances. To address this limitation,
HGDA[18] proposed a sentence-level oriented sampling method. In the few-shot
setting, K sentences containing entities are sampled as the support set. In this
paper, we also adopt HGDA’s[18] sampling strategy to obtain the support set
by performing sampling within the standard train set.

5.3 Experimental Settings

The BioBERT model is used as the base encoder, while the span extraction
network is employed for extracting entity spans. The loss calculation involves
the utilization of the positive enhanced loss function, and Adam serves as the
optimizer. Throughout this study, all experiments are conducted on a 3090Ti,
and after employing 5 different seeds for experimentation purposes, an average
F1 value is obtained. To provide a clearer details, Table 3 presents all training-
related hyperparameters.
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Table 3. Hyper-Parameter Settings

Hyper Parameter Value

Max input lenght 256
Source batch size 8
Target batch size 2
Source task encoder lr 1e-5
Target task encoder lr 1e-4
Source task classifier lr 1e-4
Target task classifier lr 1e-4
Dropout rate 0.1
Number of epoches 10
Number of learnable vectors in continuous query 7
Number of learnable vectors in hybrid query 3

5.4 Experimental Results

In this section, we present the results of performance differences among different
query templates, loss function and finally the comparison with SOTA systems.

Impact of Query Template The impact of query templates on performance
is investigated in this section, aiming to explore how the form of label informa-
tion as prior knowledge in the machine reading comprehension framework affects
recognition performance. Table 4 compares the F1 values of different query tem-
plates on the NCBI corpus under various few-shot settings(K=5, 10, 20, 50),
with the highest value for each quantity highlighted in bold.

Table 4. Performance of three different query templates on NCBI dataset.

Query Type 5 10 20 50

Continuous 50.83 58.30 65.58 69.86
Hybrid 49.81 54.11 66.94 69.39
Discrete 57.84 61.06 67.40 69.03

The table above clearly demonstrates that the discrete query template out-
performs the continuous and hybrid query templates, particularly when K=5, 10,
and 20. However, at K=50, all three templates show comparable performance.
Notably, the discrete query template exhibits a larger performance gain when
the support set is small; however, as the size of the support set increases, this
advantage gradually diminishes. Further detailed analysis can be found in Sub-
section 4.5 of this paper. Consequently, in all subsequent experiments conducted
in this study, discrete templates are exclusively employed as query templates for
MRC baseline and PEMRC.
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The Influence of Positive Enhanced Loss The effectiveness of the positive
enhanced loss function is examined by comparing the disparities between two
methods, MRC and PEMRC, with F1 value results presented in Table 5. Here,
MRC denotes the machine reading comprehension model employing solely the
cross-entropy loss function, and PEMRC incorporates the positive enhanced loss.
The maximum value for each setting is highlighted in bold.

Table 5. MRC and PEMRC performance comparison

K Method
Disease Drug/Chem Gene/Protein Species
NCBI BC5 BC5 BC4 JNL BC2 LINN S800

5
MRC 57.84 64.85 74.78 52.52 46.73 47.20 52.27 52.56
PEMRC 55.77 64.87 79.07 53.71 46.87 48.75 52.89 53.26

10
MRC 61.06 65.50 76.93 53.26 52.63 52.00 60.64 55.89
PEMRC 62.37 66.27 79.57 55.56 52.79 52.67 62.55 55.74

20
MRC 67.40 67.96 78.93 59.46 57.33 54.02 63.10 57.00
PEMRC 69.87 67.96 82.64 60.58 56.61 55.33 67.82 57.88

50
MRC 69.03 71.61 81.16 59.78 59.39 56.10 68.28 59.79
PEMRC 72.48 69.36 84.08 61.29 60.53 57.42 71.79 59.82

Table 5 demonstrates that PEMRC outperforms the MRC baseline model
on most of the eight datasets. When averaging performance across all datasets,
PEMRC achieves a 2.1% improvement over the MRC baseline system, highlight-
ing the effectiveness of the positive enhanced loss function.

Comparison with other SOTA systems In this section, we use PEMRC as
a baseline for the methodology. We conduct extensive experiments on 8 datasets
and compare them with similar systems. The SOTA systems used for comparison,
the experimental results, and the analysis of the results are described below.

SOTA systems

(i) MetaNER [13] is a multi-task learning method for domain adaptation, which
combines supervised meta-learning and adversarial training strategies. It
can obtain more robust, general and transferable representation methods
in named entity recognition tasks.

(ii) HGDA [18] introduces hardness information based on MetaNER and applies
it to biomedical domains.

As shown in Table 6, our performance is better than other systems in most
cases, and our method achieves significant performance in low-resource situa-
tions. This may be due to the fact that our designed query templates can use
the information in the pre-trained language model more directly, just like prompt
learning. The less annotated data, the more obvious the effect of using the in-
formation in the PLM. In addition, the machine reading comprehension method
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Table 6. Compared with the performance of SOTA systems, some dataset names are
replaced by abbreviations.

K Method
Disease Drug/Chem Gene/Protein Species AVG
NCBI BC5 BC5 BC4 JNL BC2 LINN S800

5
MetaNER 27.29 21.71 57.84 22.12 21.75 24.43 12.14 15.16 23.87
HGDA 31.25 26.98 61.02 25.71 37.76 35.73 17.53 28.80 33.10
PEMRC 55.77 64.87 79.07 53.71 46.86 48.75 52.89 53.26 56.90

10
MetaNER 33.30 36.88 66.59 33.60 33.74 32.65 30.38 31.64 37.35
HGDA 43.86 42.44 70.97 42.47 47.90 44.89 32.01 37.03 45.14
PEMRC 62.37 66.27 79.57 55.56 52.79 52.67 62.55 55.74 60.94

20
MetaNER 46.12 47.22 73.01 43.83 41.67 39.26 49.52 29.77 46.30
HGDA 56.31 55.29 74.72 49.44 54.66 51.24 48.43 52.05 55.26
PEMRC 69.87 67.96 82.64 60.58 56.61 55.33 67.82 57.88 64.84

50
MetaNER 57.31 61.06 74.78 50.82 53.37 50.58 61.25 36.07 55.65
HGDA 62.08 61.90 80.23 62.73 61.46 60.16 63.73 58.55 63.90
PEMRC 72.48 69.36 84.08 61.29 60.53 57.42 71.79 59.82 67.10

has only one classifier for all tasks, while HGDA and MetaNER have multiple
classifiers for multi-task learning. We believe that this unified classifier can learn
the knowledge transfer between different tasks, while the task-specific classifier
will lose some of the knowledge learned on the source tasks to some extent.

5.5 Discussion and Analysis

We offer insightful explanations to analyze the performance disparities resulting
from different query template types. There are two potential reasons for this
phenomenon:

Firstly, in the low-resource scenario (K=5), natural language text can effec-
tively leverage the knowledge within the pretrained language model, whereas
continuous and hybrid query templates constructed from random vectors fail to
align with the model’s input during pretraining and thus cannot directly harness
the knowledge embedded in the pretrained language model.

Secondly, the structure of learnable vectors present in continuous and hybrid
templates remains fixed, necessitating more training data to discover an optimal
vector. Consequently, they achieve comparable performance to discrete query
templates only when greater resources are available (K=50).

To further demonstrate how prior knowledge and label information impact
experimental performance in low-resource scenarios, we analyzed error cases gen-
erated on the NCBI (disease) test set with K=5.

From Table 7, it is evident that in Case 1, only the discrete query accurately
identifies all entities, while the continuous query successfully identifies one entity
and the hybrid query fails to identify any entity. In Case 2, sentences without en-
tities are correctly predicted solely by discrete queries, whereas both continuous
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Table 7. The following table shows two cases. Gold represents the sentence and the
entity that should be predicted, where the entity is marked in red font.

Case 1 The predicted entities

Gold The risk of cancer, especially lymphoid neoplasias, is substantially ele-
vated in A - T patients and has long been associated with chromosomal
instability.

Discrete cancer — lymphoid neoplasias — A-T
Continuous lymphoid neoplasias
Hybrid None

Case 2 The predicted entities

Gold These clustered in the region corresponding to the kinase domain, which
is highly conserved in ATM - related proteins in mouse, yeast and
Drosophila.

Discrete None
Continuous Drosophila
Hybrid proteins — mouse — yeast — Drosophila

and hybrid queries incorrectly detect false positives. Upon analysis, it becomes
apparent that the continuous query possesses limited prior knowledge, result-
ing in its failure to correctly identify or recognize entities. The hybrid query
incorporates some prior knowledge but lacks explicit label information, lead-
ing to identification of other types of entities in Case 2 such as proteins/genes
(ATM-related proteins) and species (mouse, yeast, Drosophila).

6 Conclusion and Future Work

In this paper, we present a simple yet effective approach to machine reading
comprehension. Our query template is designed to better leverage the knowledge
in pre-trained language model and facilitate knowledge transfer between source
and target tasks. Additionally, our positive enhanced loss function further boosts
model performance. This method yields significant improvements in low-resource
settings and even outperforms state-of-the-art methods in challenging biomedical
domains. Moving forward, we plan to explore machine reading comprehension
techniques across various domains with limited resources while also refining our
query design.
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