Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/107980
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Chinese and Bilingual Studiesen_US
dc.creatorDong, Yen_US
dc.creatorLi, Den_US
dc.creatorGu, Jen_US
dc.creatorQian, Len_US
dc.creatorZhou, Gen_US
dc.date.accessioned2024-07-22T07:30:46Z-
dc.date.available2024-07-22T07:30:46Z-
dc.identifier.issn1865-0929en_US
dc.identifier.urihttp://hdl.handle.net/10397/107980-
dc.description9th China Health Information Processing Conference, CHIP 2023, Hangzhou, China, October 27-29, 2023,en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.rights© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024en_US
dc.rightsThis version of the proceeding paper has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use(https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms), but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: https://doi.org/10.1007/978-981-99-9864-7_2.en_US
dc.subjectBiomedical Domainen_US
dc.subjectFew-shot Named Entity Recognitionen_US
dc.subjectMachine Reading Comprehensionen_US
dc.titlePEMRC : a positive enhanced machine reading comprehension method for few-shot named entity recognition in biomedical domainen_US
dc.typeConference Paperen_US
dc.identifier.spage22en_US
dc.identifier.epage35en_US
dc.identifier.volume1993en_US
dc.identifier.doi10.1007/978-981-99-9864-7_2en_US
dcterms.abstractIn this paper, we propose a simple and effective few-shot named entity recognition (NER) method for biomedical domain, called PEMRC (Positive Enhanced Machine Reading Comprehension). PEMRC is based on the idea of using machine reading comprehension reading comprehension (MRC) framework to perfome few-shot NER and fully exploit the prior knowledge implied in the label information. On one hand, we design three different query templates to better induce knowledge from pre-trained language models (PLMs). On the other hand, we design a positive enhanced loss function to improve the model’s accuracy in identifying the start and end positions of entities under low-resources scenarios. Extensive experimental results on eight benchmark datasets in biomedical domain show that PEMRC significantly improves the performance of few-shot NER.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationCommunications in computer and information science, 2024, v. 1993, p. 22-35en_US
dcterms.isPartOfCommunications in computer and information scienceen_US
dcterms.issued2024-
dc.identifier.scopus2-s2.0-85186730787-
dc.relation.conferenceChina Health Information Processing Conference [CHIP]en_US
dc.identifier.eissn1865-0937en_US
dc.description.validate202407 bcchen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumbera3068a-
dc.identifier.SubFormID49353-
dc.description.fundingSourceSelf-fundeden_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Conference Paper
Files in This Item:
File Description SizeFormat 
Dong_PEMRC_Positive_Enhanced.pdfPre-Published version914.24 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

88
Citations as of Apr 14, 2025

Downloads

3
Citations as of Apr 14, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.