Please use this identifier to cite or link to this item:
http://hdl.handle.net/10397/6033
| Title: | Developing finite element methods for maxwell's equations in a cole-cole dispersive medium | Authors: | Li, J Huang, Y Lin, Y |
Issue Date: | 2011 | Source: | SIAM journal on scientific computing, v. 33, no. 6, p. 3153–3174 | Abstract: | In this paper, we consider the time-dependent Maxwell's equations when Cole–Cole dispersive medium is involved. The Cole–Cole model contains a fractional time derivative term, which couples with the standard Maxwell's equations in free space and creates some challenges in developing and analyzing time-domain finite element methods for solving this model as mentioned in our earlier work [J. Li, J. Sci. Comput., 47 (2001), pp. 1–26]. By adopting some techniques developed for the fractional diffusion equations [V.J. Ervin, N. Heuer, and J.P. Roop, SIAM J. Numer. Anal., 45 (2007), pp. 572–591], [Y. Lin and C. Xu, J. Comput. Phys., 225 (2007), pp. 1533–1552], [F. Liu, P. Zhuang, V. Anh, I. Turner, and K. Burrage, Appl. Math. Comput., 191 (2007), pp. 12–20], we propose two fully discrete mixed finite element schemes for the Cole–Cole model. Numerical stability and optimal error estimates are proved for both schemes. The proposed algorithms are implemented and detailed numerical results are provided to justify our theoretical analysis. | Keywords: | Maxwell's equations Dispersive medium Cole–Cole model Finite element method |
Publisher: | Society for Industrial and Applied Mathematics | Journal: | SIAM journal on scientific computing | ISSN: | 1064-8275 | EISSN: | 1095-7197 | DOI: | 10.1137/110827624 | Rights: | © 2011 Society for Industrial and Applied Mathematics |
| Appears in Collections: | Journal/Magazine Article |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| Li_Finite_Element_Dispersive.pdf | 267.06 kB | Adobe PDF | View/Open |
Page views
211
Last Week
0
0
Last month
Citations as of Nov 10, 2025
Downloads
458
Citations as of Nov 10, 2025
SCOPUSTM
Citations
66
Last Week
0
0
Last month
0
0
Citations as of Dec 19, 2025
WEB OF SCIENCETM
Citations
66
Last Week
1
1
Last month
0
0
Citations as of Dec 18, 2025
Google ScholarTM
Check
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.



