Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/6033
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematics-
dc.creatorLi, J-
dc.creatorHuang, Y-
dc.creatorLin, Y-
dc.date.accessioned2014-12-11T08:28:07Z-
dc.date.available2014-12-11T08:28:07Z-
dc.identifier.issn1064-8275-
dc.identifier.urihttp://hdl.handle.net/10397/6033-
dc.language.isoenen_US
dc.publisherSociety for Industrial and Applied Mathematicsen_US
dc.rights© 2011 Society for Industrial and Applied Mathematicsen_US
dc.subjectMaxwell's equationsen_US
dc.subjectDispersive mediumen_US
dc.subjectCole–Cole modelen_US
dc.subjectFinite element methoden_US
dc.titleDeveloping finite element methods for maxwell's equations in a cole-cole dispersive mediumen_US
dc.typeJournal/Magazine Articleen_US
dc.description.otherinformationAuthor name used in this publication: Yanping Linen_US
dc.identifier.spage3153-
dc.identifier.epage3174-
dc.identifier.volume33-
dc.identifier.issue6-
dc.identifier.doi10.1137/110827624-
dcterms.abstractIn this paper, we consider the time-dependent Maxwell's equations when Cole–Cole dispersive medium is involved. The Cole–Cole model contains a fractional time derivative term, which couples with the standard Maxwell's equations in free space and creates some challenges in developing and analyzing time-domain finite element methods for solving this model as mentioned in our earlier work [J. Li, J. Sci. Comput., 47 (2001), pp. 1–26]. By adopting some techniques developed for the fractional diffusion equations [V.J. Ervin, N. Heuer, and J.P. Roop, SIAM J. Numer. Anal., 45 (2007), pp. 572–591], [Y. Lin and C. Xu, J. Comput. Phys., 225 (2007), pp. 1533–1552], [F. Liu, P. Zhuang, V. Anh, I. Turner, and K. Burrage, Appl. Math. Comput., 191 (2007), pp. 12–20], we propose two fully discrete mixed finite element schemes for the Cole–Cole model. Numerical stability and optimal error estimates are proved for both schemes. The proposed algorithms are implemented and detailed numerical results are provided to justify our theoretical analysis.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationSIAM journal on scientific computing, v. 33, no. 6, p. 3153–3174-
dcterms.isPartOfSIAM journal on scientific computing-
dcterms.issued2011-
dc.identifier.isiWOS:000298370000004-
dc.identifier.scopus2-s2.0-84863050408-
dc.identifier.eissn1095-7197-
dc.identifier.rosgroupidr60873-
dc.description.ros2011-2012 > Academic research: refereed > Publication in refereed journal-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_IR/PIRAen_US
dc.description.pubStatusPublisheden_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Li_Finite_Element_Dispersive.pdf267.06 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

134
Last Week
1
Last month
Citations as of Apr 21, 2024

Downloads

309
Citations as of Apr 21, 2024

SCOPUSTM   
Citations

60
Last Week
0
Last month
0
Citations as of Apr 19, 2024

WEB OF SCIENCETM
Citations

60
Last Week
1
Last month
0
Citations as of Apr 18, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.