Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/99441
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematics-
dc.creatorLiu, CJ-
dc.creatorYang, T-
dc.creatorZhang, Z-
dc.date.accessioned2023-07-10T03:01:27Z-
dc.date.available2023-07-10T03:01:27Z-
dc.identifier.issn0036-1410-
dc.identifier.urihttp://hdl.handle.net/10397/99441-
dc.language.isoenen_US
dc.publisherSociety for Industrial and Applied Mathematicsen_US
dc.rights© 2023 Society for Industrial and Applied Mathematicsen_US
dc.rightsThe following publication Liu, C. J., Yang, T., & Zhang, Z. (2023). Validity of Prandtl expansions for steady MHD in the Sobolev framework. SIAM Journal on Mathematical Analysis, 55(3), 2377-2410 is available at https://doi.org/10.1137/22M1507139.en_US
dc.subject2D steady MHD systemen_US
dc.subjectPrandtl expansionen_US
dc.subjectHigh Reynolds number limiten_US
dc.subjectSobolev spacesen_US
dc.subjectStabilityen_US
dc.titleValidity of Prandtl expansions for steady MHD in the Sobolev frameworken_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage2377-
dc.identifier.epage2410-
dc.identifier.volume55-
dc.identifier.issue3-
dc.identifier.doi10.1137/22M1507139-
dcterms.abstractThis paper concerns the vanishing viscosity and magnetic resistivity limit for the two-dimensional steady incompressible MHD system on the half-plane with no-slip boundary conditions on velocity fields and perfectly conducting wall conditions on magnetic fields. We prove the nonlinear stability of shear flows of the Prandtl type with nondegenerate tangential magnetic fields but without any positivity or monotonicity assumption on velocity fields. It contrasts sharply with the steady Navier–Stokes equations and reflects the stabilization effect of magnetic fields. The main aims in the analysis are to design an intrinsic weight function to treat the incompatibility of the natural multiplier with boundary conditions and to establish critical Hardy-type inequalities and properly weighted estimates that lead to an almost optimal convergence rate.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationSIAM journal on mathematical analysis, 2023, v. 55, no. 3, , p. 2377-2410-
dcterms.isPartOfSIAM journal on mathematical analysis-
dcterms.issued2023-
dc.identifier.eissn1095-7154-
dc.description.validate202307 bcch-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumbera2185en_US
dc.identifier.SubFormID46924en_US
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Key R&D Program of China;National Natural Science Foundation of China;Fundamental Research Funds for the Central Universities granten_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryVoR alloweden_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Liu_Validity_Prandtl_Expansions.pdf513.06 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

90
Citations as of Nov 10, 2025

Downloads

76
Citations as of Nov 10, 2025

WEB OF SCIENCETM
Citations

5
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.