Please use this identifier to cite or link to this item:
http://hdl.handle.net/10397/99430
| DC Field | Value | Language |
|---|---|---|
| dc.contributor | Department of Applied Mathematics | en_US |
| dc.creator | Qiu, C | en_US |
| dc.creator | Yang, X | en_US |
| dc.creator | Zhou, Y | en_US |
| dc.date.accessioned | 2023-07-10T03:01:22Z | - |
| dc.date.available | 2023-07-10T03:01:22Z | - |
| dc.identifier.issn | 0022-247X | en_US |
| dc.identifier.uri | http://hdl.handle.net/10397/99430 | - |
| dc.language.iso | en | en_US |
| dc.publisher | Academic Press | en_US |
| dc.rights | © 2022 Elsevier Inc. All rights reserved. | en_US |
| dc.rights | © 2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/. | en_US |
| dc.rights | The following publication Qiu, C., Yang, X., & Zhou, Y. (2022). A rearrangement minimization problem related to a nonlinear parametric boundary value problem. Journal of Mathematical Analysis and Applications, 515(1), 126379 is available at https://dx.doi.org/10.1016/j.jmaa.2022.126379. | en_US |
| dc.subject | Energy functional | en_US |
| dc.subject | p-Laplacian type operator | en_US |
| dc.subject | Parameter | en_US |
| dc.subject | Rearrangement functions | en_US |
| dc.subject | Regularity | en_US |
| dc.title | A rearrangement minimization problem related to a nonlinear parametric boundary value problem | en_US |
| dc.type | Journal/Magazine Article | en_US |
| dc.identifier.volume | 515 | en_US |
| dc.identifier.issue | 1 | en_US |
| dc.identifier.doi | 10.1016/j.jmaa.2022.126379 | en_US |
| dcterms.abstract | This paper deals with a rearrangement minimization problem, which is associated with a nonlinear parametric boundary value problem. When the parameter is positive and less than the principal eigenvalue of the p-Laplacian type operator, we obtain that the nonlinear parametric boundary value problem has a unique solution. We then establish the solvability of the rearrangement minimization problem. Finally, based on Stampacchia truncation method, we establish the regularity property of the solution to the nonlinear boundary value problem, and then we investigate the symmetric property of the solution to the rearrangement minimization problem when the domain is a ball at the origin. | en_US |
| dcterms.accessRights | open access | en_US |
| dcterms.bibliographicCitation | Journal of mathematical analysis and applications, 1 Nov. 2022, v. 515, no. 1, 126379 | en_US |
| dcterms.isPartOf | Journal of mathematical analysis and applications | en_US |
| dcterms.issued | 2022-11 | - |
| dc.identifier.eissn | 1096-0813 | en_US |
| dc.identifier.artn | 126379 | en_US |
| dc.description.validate | 202307 bcvc | en_US |
| dc.description.oa | Accepted Manuscript | en_US |
| dc.identifier.FolderNumber | a2176 | - |
| dc.identifier.SubFormID | 46888 | - |
| dc.description.fundingSource | RGC | en_US |
| dc.description.pubStatus | Published | en_US |
| dc.description.oaCategory | Green (AAM) | en_US |
| Appears in Collections: | Journal/Magazine Article | |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| Qiu_Rearrangement_Minimization_Problem.pdf | Pre-Published version | 730.69 kB | Adobe PDF | View/Open |
Page views
63
Citations as of Apr 14, 2025
Downloads
9
Citations as of Apr 14, 2025
Google ScholarTM
Check
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.



