Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/99150
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorJin, HYen_US
dc.creatorWang, ZAen_US
dc.creatorWu, Len_US
dc.date.accessioned2023-06-26T01:17:29Z-
dc.date.available2023-06-26T01:17:29Z-
dc.identifier.issn0022-0396en_US
dc.identifier.urihttp://hdl.handle.net/10397/99150-
dc.language.isoenen_US
dc.publisherAcademic Pressen_US
dc.rights© 2022 Elsevier Inc. All rights reserved.en_US
dc.rights© 2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.en_US
dc.rightsThe following publication Jin, H. Y., Wang, Z. A., & Wu, L. (2022). Global dynamics of a three-species spatial food chain model. Journal of Differential Equations, 333, 144-183.is available at https://doi.org/10.1016/j.jde.2022.06.007..en_US
dc.subjectBoundednessen_US
dc.subjectFood chainen_US
dc.subjectGlobal stabilizationen_US
dc.subjectPrey-taxisen_US
dc.subjectSpatial movementen_US
dc.titleGlobal dynamics of a three-species spatial food chain modelen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage144en_US
dc.identifier.epage183en_US
dc.identifier.volume333en_US
dc.identifier.doi10.1016/j.jde.2022.06.007en_US
dcterms.abstractIn this paper, we study the following initial-boundary value problem of a three-species spatial food chain model {ut=d1Δu+u(1−u)−b1uv, x∈Ω,t>0vt=d2Δv−∇⋅(ξv∇u)+uv−b2vw−θ1v,x∈Ω,t>0wt=Δw−∇⋅(χw∇v)+vw−θ2w,x∈Ω,t>0 in a bounded domain Ω⊂R2 with smooth boundary and homogeneous Neumann boundary conditions, where all parameters are positive constants. By the delicate coupling energy estimates, we first establish the global existence of classical solutions in two dimensional spaces for appropriate initial data. Moreover by constructing Lyapunov functionals and using LaSalle's invariance principle, we establish the global stability of the prey-only steady state, semi-coexistence and coexistence steady states.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationJournal of differential equations, 5 Oct. 2022, v. 333, p. 144-183en_US
dcterms.isPartOfJournal of differential equationsen_US
dcterms.issued2022-10-05-
dc.identifier.scopus2-s2.0-85132239000-
dc.identifier.eissn1090-2732en_US
dc.description.validate202306 bckwen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumbera2120-
dc.identifier.SubFormID46691-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Wang_Global_Dynamics_Three-Species.pdfPre-Published version786.8 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

78
Citations as of Apr 14, 2025

Downloads

59
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

84
Citations as of Sep 12, 2025

WEB OF SCIENCETM
Citations

64
Citations as of Oct 10, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.