Please use this identifier to cite or link to this item:
http://hdl.handle.net/10397/99150
| DC Field | Value | Language |
|---|---|---|
| dc.contributor | Department of Applied Mathematics | en_US |
| dc.creator | Jin, HY | en_US |
| dc.creator | Wang, ZA | en_US |
| dc.creator | Wu, L | en_US |
| dc.date.accessioned | 2023-06-26T01:17:29Z | - |
| dc.date.available | 2023-06-26T01:17:29Z | - |
| dc.identifier.issn | 0022-0396 | en_US |
| dc.identifier.uri | http://hdl.handle.net/10397/99150 | - |
| dc.language.iso | en | en_US |
| dc.publisher | Academic Press | en_US |
| dc.rights | © 2022 Elsevier Inc. All rights reserved. | en_US |
| dc.rights | © 2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/. | en_US |
| dc.rights | The following publication Jin, H. Y., Wang, Z. A., & Wu, L. (2022). Global dynamics of a three-species spatial food chain model. Journal of Differential Equations, 333, 144-183.is available at https://doi.org/10.1016/j.jde.2022.06.007.. | en_US |
| dc.subject | Boundedness | en_US |
| dc.subject | Food chain | en_US |
| dc.subject | Global stabilization | en_US |
| dc.subject | Prey-taxis | en_US |
| dc.subject | Spatial movement | en_US |
| dc.title | Global dynamics of a three-species spatial food chain model | en_US |
| dc.type | Journal/Magazine Article | en_US |
| dc.identifier.spage | 144 | en_US |
| dc.identifier.epage | 183 | en_US |
| dc.identifier.volume | 333 | en_US |
| dc.identifier.doi | 10.1016/j.jde.2022.06.007 | en_US |
| dcterms.abstract | In this paper, we study the following initial-boundary value problem of a three-species spatial food chain model {ut=d1Δu+u(1−u)−b1uv, x∈Ω,t>0vt=d2Δv−∇⋅(ξv∇u)+uv−b2vw−θ1v,x∈Ω,t>0wt=Δw−∇⋅(χw∇v)+vw−θ2w,x∈Ω,t>0 in a bounded domain Ω⊂R2 with smooth boundary and homogeneous Neumann boundary conditions, where all parameters are positive constants. By the delicate coupling energy estimates, we first establish the global existence of classical solutions in two dimensional spaces for appropriate initial data. Moreover by constructing Lyapunov functionals and using LaSalle's invariance principle, we establish the global stability of the prey-only steady state, semi-coexistence and coexistence steady states. | en_US |
| dcterms.accessRights | open access | en_US |
| dcterms.bibliographicCitation | Journal of differential equations, 5 Oct. 2022, v. 333, p. 144-183 | en_US |
| dcterms.isPartOf | Journal of differential equations | en_US |
| dcterms.issued | 2022-10-05 | - |
| dc.identifier.scopus | 2-s2.0-85132239000 | - |
| dc.identifier.eissn | 1090-2732 | en_US |
| dc.description.validate | 202306 bckw | en_US |
| dc.description.oa | Accepted Manuscript | en_US |
| dc.identifier.FolderNumber | a2120 | - |
| dc.identifier.SubFormID | 46691 | - |
| dc.description.fundingSource | RGC | en_US |
| dc.description.pubStatus | Published | en_US |
| dc.description.oaCategory | Green (AAM) | en_US |
| Appears in Collections: | Journal/Magazine Article | |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| Wang_Global_Dynamics_Three-Species.pdf | Pre-Published version | 786.8 kB | Adobe PDF | View/Open |
Page views
78
Citations as of Apr 14, 2025
Downloads
59
Citations as of Apr 14, 2025
SCOPUSTM
Citations
84
Citations as of Sep 12, 2025
WEB OF SCIENCETM
Citations
64
Citations as of Oct 10, 2024
Google ScholarTM
Check
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.



