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GLOBAL DYNAMICS OF A THREE-SPECIES SPATIAL FOOD CHAIN
MODEL

HAI-YANG JIN, ZHI-AN WANG, AND LEYUN WU

ABSTRACT. In this paper, we study the following initial-boundary value problem of a three-
species spatial food chain model

uy = diAu~+ u(l — u) — buw, z€Q,t>0
v = doAv — V- (§vVu) + uwv — bovw — 01v, x € Q,t >0
w = Aw — V - (xwVv) + vw — fw, z€Qt>0

in a bounded domain Q C R? with smooth boundary and homogeneous Neumann boundary con-
ditions, where all parameters are positive constants. By the delicate coupling energy estimates,
we first establish the global existence of classical solutions in two dimensional spaces for appropri-
ate initial data. Moreover by constructing Lyapunov functionals and using LaSalle’s invariance
principle, we establish the global stability of the prey-only steady state, semi-coexistence and
coexistence steady states.

1. INTRODUCTION AND MAIN RESULTS

A food chain is a linearly linked network in a food web starting from producer species (such
as grass or trees which use radiation from the Sun to make their food via photosynthesis) and
ending at an apex predator species (like grizzly bears or killer whales), see Wikipedia. The
length of a food chain is the number of links between a trophic consumer and the base of the
web, and it is commonly used as a metric to quantify food web trophic structure. While food
chains are often used in ecological modeling, most of theoretical attentions are focused on the
three-species continuous-time food chain models although they are simplified abstractions of real
food webs, but complex in their dynamics and mathematical implications [33]. The prototype
of three-species food chain models was first proposed by Hasting and Powell in [12], reading as

up = u(l —u) — f1(u,v)v, t>0,
vy = fi(u,v)v — fa(v,w)w — b1v, t >0, (1.1)
w = fo(v,w)w — Gaw, t>0,

where (u,v,w) := (u,v,w)(t) represent the densities of the prey species, intermediate and top

predators, respectively, at time ¢ > 0. The functions f;(¢ = 1,2) denote the trophic functions
(i.e. functional response functions). When f;(i = 1,2) are Holling type II trophic functions (i.e.
fily, z) = 45, with constants a;, b; > 0), the food chain model (1.1) exhibits complex dynamics,
like chaos [12, 22, 24, 26], periodic orbits [25], bistability [32]. If f;(i = 1, 2) are ratio-dependent
type trophic functions (i.e. f;(y,z) = J +§’niz with constant m; > 0), a complete classification of
the asymptotic behavior of solutions to (1.1) with the uniqueness of limit cycles was provided in
[13]. If fi(i = 1,2) are Beddington-DeAngelis type trophic functions (i.e. fi(y,z) = #@H&z
with constants A;, B; > 0), the chaotic behavior of the model (1.1) was investigated in [30, 46].
Recently the food chain model with fear effect was analytically studied in [8, 31].

Although the temporal food chain model (1.1) has been extensively studied in the literature
for different trophic functions and rich dynamics have been revealed as recalled above, the
study of spatial food chain models taking into account the spatial movement of species seems
not being touched yet as far as we know. The spatial movement is an indispensable factor
for most of species (if not all) to survive and thrive. The goal of this paper is to develop a

2010 Mathematics Subject Classification. 35A01, 35B40, 35B44, 35K57, 35Q92, 92C17.
Key words and phrases. Food chain, spatial movement, prey-taxis, boundedness, global stabilization.
1

© 2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/



2 HAI-YANG JIN, ZHI-AN WANG, AND LEYUN WU

food chain model with spatial movements and investigate its global dynamics. In the model,
apart from the random motions (diffusions), we shall also include the directional movement of
predators toward their preys based upon the prey-taxis mechanism (i.e. the predators move
upward the prey density gradient). It appears that the Holling type I trophic function has not
been considered for (1.1) in literatures. Therefore in the present work, we shall complement this
case by assuming the trophic functions are of Holling Type I (i.e. Lotka-Volterra type), that is

fi(u,v) = u, fa(v,w)=wv. (1.2)

Then the model we consider takes the following form

up = diAu+ u(l — u) — byuv, reNt>0

v = doAv — V - (§vVu) + uv — byvw — 610, zet>0

wy = Aw — V - (xwVv) + vw — Ghw, x e t>0, (1.3)
oyu = 0yv = 0w =0, x e 0, t>0,

u(z,0) = up(z),v(z,0) = vo(z), w(z,0) = wo(x), x€Q,

where the variables, functions and parameters have the following biological meanings:

) - a bounded domain in R? denoting the habitat that the species reside;

u, v, w - density of the prey, intermediate predator and top predator, respectively;
d1,ds - diffusion rates of the prey and intermediate predator, respectively;

&, x - prey-taxis coefficients;

b1, by - consumption rates of the prey and the intermediate predator, respectively;
01,65 - mortality rates of the intermediate and top predators, respectively;

In the above, all parameters are positive. 9, = a% and v is the outward unit normal vector on
0f) - the boundary of 2. Here the homogeneous Neumann boundary conditions are imposed on
0%} to ensure that no individuals can cross the boundary, so that the system is closed. The global
existence and large-time behavior of solutions to (1.3) in two dimensions will be established in
this paper. We remark that from the mathematical point of view, the analysis of the global
existence of solutions for the Holling type I trophic functions are more difficult than other types
of trophic functions like Holling type II, ratio-dependent or Beddington-DeAngelis type which
have priori bounds for any u, v > 0, while the Holling type I does not possess such a nice property
directly useful for the global posedness of solutions.

Our first result regarding the global existence of classical solutions with uniform-in-time bound
is stated below.

Theorem 1.1 (Global boundedness). Let Q2 C R? be a bounded domain with smooth boundary.

Assume ug € W2°(Q) and (vo, wo) € [WH°(Q)]* with ug,vo, wo = 0. Then the problem (1.3)

has a unique global classical solution (u,v,w) € [CO(Q x [0,00)) N CHL(Q x (0,00))]? satisfying

u,v,w > 0 for all t > 0. Moreover there exists a constant C > 0 independent of t such that
[us D)l[wroe + 1o ) llwree + [[w(, )|z < C.

Our next results are concerned with the large time behavior of constant steady states of (1.3),
denoted by (us, vs, ws), which satisfy

us(l —ug — byvs) =0,
vs(us — bows — 01) = 0,

ws(vs — 02) = 0.
After some calculations, we can find that
(s, vs, ws)
(0,0,0) or (1,0,0), if 61 >1,
= ¢(0,0,0) or (1,0,0) or (61, 52+,0), if 6; <1 and @)+ b6y > 1,

(0,0,0) or (1,0,0) or (61, 1;191,0) or (U, vy, wy) if 01 <1 and 01 + b16s < 1,
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where

(1.4)

1—0165—86
(’U,*7’U*7w*) = <1 - 61027027 121) .

ba
We call (0,0,0) the extinction steady state, (1,0,0) the prey-only steady state, (61, %, 0) the
semi-coexistence steady states and (u., v., w,) the coexistence steady state. We shall prove that
the latter three steady states may be globally asymptotically stable under certain conditions. We
also remark that the boundedness of ||v||z= shown in Theorem 1.1 is independent of the prey-
taxis coefficient x > 0 (see Lemma 3.5). Then our stability results are stated in the following
theorem.

Theorem 1.2 (Global stabilization). Assume the conditions in Theorem 1.1 hold. Let (u,v,w)
be the solution of (1.3) obtained in Theorem 1.1 and let K = max{1, ||ug||ze}. Then the following
results hold true.

e If 01 > 1, the steady state (1,0,0) is globally asymptotically stable;

e If0; <1 and 61+ b16y > 1, the steady state (61, lg—fl, 0) is globally asymptotically stable

provided
4dydo6,

2
e (1—6)K
e If 0, < 1 and 01 + b10y < 1, the steady state (us,vs,wy) defined by (1.4) is globally
asymptotically stable provided
4d1d2u*
blKQU*

where ||v||pe~ depends on by, by, 01 but is independent of x.

4d1d2u*v* — £2b1K2Uz
bady s, |07 oo

< and x* < , (1.5)

The spatial food chain model (1.3) essentially uses the prey-taxis mechanism to describe
the directed movements of predators toward the prey. It can be regarded as an extension of
the two-species predator-prey system with prey-taxis (called the prey-taxis system) originally
proposed in [21]. In recent years, the global dynamics of numerous prey-taxis systems have
been widely studied (cf. [1, 2, 6, 10, 17, 19, 27, 36, 3841, 44, 45] and references therein).
Compared to the various prey-taxis systems studied in these works, the three-species spatial
food chain model (1.3) has more complex coupling structures. To derive the L*-bound of w,
we require a priori bound for ||Vv| L~ whose estimate, however, depends on w itself and u.
This intertwined estimate was not encountered in existing literatures for the prey-taxis systems
where the L°°-estimates of Vv is unneeded for global boundedness. In this paper, we shall
start with a coupling entropy estimate ||[vlnw|/;1 + ||[Vul/2 for the energy estimates to derive
the priori bound of ||v||ze with the help of semigroup theory. This idea was first developed
in [37] for the classical chemotaxis system and then for prey-taxis system (cf. [17]) as well
as some other type chemotaxis models [16, 18]. To derive the priori bound of ||Vv||re, apart
from the above-mentioned entropy estimates, we shall capture the model structure to use some
essential estimates derived in [7, 15] on the second-order derivative of u (see Lemma 3.6) to carry
out delicate energy estimates. However, in order to use the second-order estimate as in [15],
we need higher-order regularity of the initial value up up to the second-order derivative (i.e.,
up € W2*(Q)). The proofs of global stability results in Theorem 1.2 are routine based upon
the Lyapunov functionals alongside LaSalle’s invariance principle. We remark recently an alarm
taxis system was proposed in [11] and its global boundedness and asymptotics of solutions in two
dimensions was established in [20]. The alarm taxis system studied in [11, 20] share some similar
structures as the spatial food chain model (1.3) but has quadratic decay terms (i.e. intra-specific
competitions) for v and w. The work [20] fully uses these quadratic decay terms to obtain the
local-in-time integrability of L?-norms of v and w, based on which the global boundedness of
solutions was derived. Since the food chain model (1.3) has no quadratic decay terms for v and
w, the methods developed in [20] are inapplicable to (1.3).

The paper is organized as follows. In section 2, we state the local existence theorem with some
preliminary results. Then in section 3, we conduct delicate energy estimates to derive the global
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boundedness of solutions and prove Theorem 1.1. In section 4, we use Lyapunov functionals and
LaSalle’ invariance principle to prove the global stability results stated in Theorem 1.2.
2. LOCAL EXISTENCE AND PRELIMINARIES

In what follows, we shall abbreviate fQ fdx as fQ f for simplicity without confusion. Moreover,
we will use ¢; and K; (i = 1,2,...) to denote generic positive constants independent of x and
t. The local existence of solutions to (1.3) can be readily proved by the Amann’s theorem (see
[3, 4]). The positivity of solutions can be shown by the strong maximum principle. We omit the
details for brevity and state the results below.

Lemma 2.1 (Local existence). Let the assumptions in Theorem 1.1 hold. Then there exists a
constant Tpqaz € (0,00] such that the problem (1.3) has a unique classical solution

(u,v,w) € [CO(Q % [0, Thngz)) N 02’1(9 X (OaTmal‘))]s
satisfying u,v,w > 0 for allt > 0. Moreover,
if Tiaz < 00, then limsup (||u(-, )| + |00 )10 + [Jw(:, )] L) = 00
t

Lemma 2.2. Let the assumptions in Lemma 2.1 hold. Then the solution of (1.3) satisfies
|u(-,t)||r < K, for all t € (0, Tyaz), (2.1)
where K = max{1, ||ugl| o}
Proof. The inequality of (2.1) is a consequence of [17, Lemma 2.2]. O
Lemma 2.3. Suppose the assumptions in Lemma 2.1 hold. Then the solution of (1.3) satisfies
loCBlls + (o)l < Ky, for all ¢ € (0, Togs), (2.2)
where K1 > 0 is a constant independent of t,€ and x.

Proof. Using the equations of (1.3), we can derive that

d
— [ (u+b1v + bibyw) = / u(l—u) —b191/ v —b1b292/ w. (2.3)
dt Jo Q Q 0

Young’s inequality entails that
2/u§/u2+]Q\,
Q Q

which substituted into (2.3) gives

d
— (u + blv + blbgw) + / U+ b1(91/ v+ b1b292/ w < ’Q| (2.4)
dt Jo Q Q Q
Letting 01 = min{1, 60,62}, from (2.4), we have
d
— [ (u+b1v + bibow) + 01 / (u+ byv + bibow) < |9,
which together with Grénwall’s inequality gives (2.2). O

The following Lemma can be proved in the same way as in [35, Lemma 3.4].

Lemma 2.4. Let T > 0, 7 € (0,7), a > 0 and b > 0. Suppose that y : [0,T) — [0,00) is
absolutely continuous and fulfills

Y (t) +ay(t) < h(t) forallt € (0,T),

with some nonnegative function h € L} ([0,T)) satisfying ftt+T h(t) < b forallt € [0,T — 7).
Then

y(t) < max {y(O) + b, L2 + Qb} for all t € (0,7T).
ar
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Lemma 2.5 ([29]). Let Q be a bounded domain in R? with smooth boundary and f € WH2(Q).
Then for any € > 0, there exists a constant Cc > 0 such that

1£17s < el VA2l I Flll e+ CoCFIZ N I £l + [LFl2)-

Lemma 2.6 ([28]). Assume that Q) is a bounded domain, and let g € C*(Q) satisfy 6—9 =0 on
0. Then we have )
| 9l 2
<2
£ KIVgl®,
where k = K(Q) is an upper bound of the curvatures of 0.

Lemma 2.7. Let ¢ € C%(Q) be a positive function satisfying % =0 on ). Then there exists
a constant k1 > 0 such that

2112 4
K1 (/QmﬁJr/ﬂ Vol ) /¢\D2ln¢2 (2.5)

Proof. Motivated by some ideas in [43], we first show that
\V/ 4
[ SR < var [ oo, (2.6)
o ¢ Q
In fact, using integration by parts alongside the Neumann boundary condition V¢ - v = 0 on
0Q, Holder’s inequality, and noting the fact V|Vé|? = 2D?¢ - Ve, we can derive that

4
A'Z‘ﬁ' :/QVln¢|2V1n¢-V¢

—/¢V\v1n¢|2.v1n¢—/¢\v1n¢|2mn¢
Q Q

_ _2/ (D*Ing-Vé)-Vo [ |V4[*Alné
B Q ¢

() ([ (foome) ([ %)
coeinfowrnr) (1)

which gives (2.6).
On the other hand, using the fact (a — b)? > 2a? — b* for all a,b € R, one has

21 9% 1 9¢ 99
2 2 _ — . - .
/Q ¢|D ln¢‘ - /Q ¢ k,zlzjl ‘ (25 6xk8xl (252 8xk 81‘[

2
1 1 0% 2 1L 9 0¢2
> = . _ .7
_2/Q¢kzl::1‘¢ 8xk8xl‘ /Q¢‘ 2’ ox 8.%‘1
1/ |D*¢]* [ |Vg|*
o ¢

which, together with (2.6), gives

/W <9 ‘W’|4 +2/¢]D21n¢|2 (14 +8v/2) /qb!D21n¢>|2 (2.7)
Q ¢ Q

Then combining (2.6) and (2.7), we obtain

1 |D?¢|? \V¢|4> 2 2
20 + 122 </ o) +/Q /WD gl

which gives (2.5) by letting xq :

1
20+12f
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Next we collect some well-known smoothing estimates for the Neumann heat semigroup, which
will be used later.

Lemma 2.8 ([42]). Let (¢!®);>0 be the Neumann heat semigroup in Q, and let \; > 0 denote the
first nonzero eigenvalue of —A in Q under Neumann boundary conditions. Then for all t > 0,
there exist some constants v; (i = 1,2,3,4) depending only on Q such that

(i) If2 < p < o0, then

Vel 2| p < y1e % || V2| Lo (2.8)
for all z € WHP(Q).
(ii) If 1 < ¢ < p < oo, then
Ve 2| 1r < 7o (1 +t—%—%<%—%>) e M| 2| g (2.9)
for all z € LY(2).
(iii) If 1 < g < p < o0, then
_n(l_1
et 2] Lo < 3 <1+t 3 p>) 12| o (2.10)
for all z € LY(2).
(iv) If 1 < g < p < o0, then
tdA -2y _adt
€2V - 2||lpp < va (141 a p)e |2 La (2.11)

for all z € (C§°(2))".

We note that the result in Lemma 2.8 (iv) also holds true for any z € L4(2) with 1 < ¢ < oo
since C§°(2) is dense in LI(2)(1 < g < 00) (see also [42]).

3. PROOF OF THEOREM 1.1

In this section, we shall establish the boundedness of solution in two dimensional spaces.
3.1. Boundedness of ||v(-,t)||z~. We first establish the boundedness of |[v(:,t)| L~ based on
the energy estimates.

Lemma 3.1. Let (u,v,w) be the solution obtained in Lemma 2.1. Then it holds that

2 ) brd 2
< /|VU| + g/vlnv>—|—d1/u|D21n ‘2 1 2/ |V'U|

2 2 K K
§ @ G\Vu] / ‘VU’ +91 / |’U lnv| 1b1 bQ —I—K ’
2 o0 81/ U § e

for all t € (0, Tinaz), where K and K; are presented in (2.1) and (2.2), respectively.

(3.1)

Proof. We multiply the first equation of (1.3) by —% and integrate the resulting equation by

parts to obtain

2
- utAu—f—dl/ Ayl :/(u—l)Au—i-bl/vAu

= —/ |Vul? — b1/ Vu - Vo, for all t € (0, Thaz)-
Q Q
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Noting that

- utAu:/Vu-V(lnu)t
Qu Q
:/w- (V“)
Q U t
_d/ |Vul? 1
dt

2dt

2,
),

IVUP
u

(IVul?).

|[Vul?

(3.3)

Ut for all t € (0, Traz)-

Then substituting (3.3) into (3.2) for all t € (0,T)nqz) one has

[Vl

i),

o[ B oL [

!VUI2

V.

t—bl/VU'

(3.4)

Using the first equation of (1.3) again, for all ¢t € (0, T},42) We can derive that

IVUI2U _d
2

|[Vul?
u2

[Vul?

3!
2 Ja
? Q U2
which substituted into (3.4) gives

2
/ |Vul d1/
th Q

= Au—bl/Vu-Vv—i-
Q

1
1
Au+2/§2

|Auf?

u2

IVU\2
Q u?

?

!Vu\2

/\Aul2 /\DQUZ /
/\AU|2 | D?ul® /
- - + 2
Q Q 2 Jaq
/\Au|2 / |D2ul?> 1
frg —_— 7_’_7
Q u Q U 2 Joq
for all t € (0, Tmax) which entails that
Vul|? Aul?
T sy [
0 u

Q u?
[Vul*

u3

4
2

2

+dy
Q

—dy

[Vu’(1 —u)

[Vul?

3 2 bl
+ 2/Q ’VU| + 5 /Q
1 / Vu
2 0 u
Using the integration by parts and the fact that Vu - VAu = %A|Vu]2 —
A|Vu\2

o2

|Vul?v

u

/|Vu2v
o u

_bl/
2 Ja
1 2
-3, 19~

U
b
2

|Vul?v

|[Vul?

for all t € (0, Thaz)-

| D%u|?, we have

u
o|Vul? 1
ov
G\Vulz
ov

—ds +

u

/ V|Vu|2 -Vu

[Vul? o
2 0 u2

[Vul*

—dS +
Q u?

u

8|Vu\2
ov
[Vul?

o u?

2,12
~ds — d/'D“|

Au for all t € (0, Trnaz)-

u

On the other hand, using the integration by parts, one has

[Vu|*
o u
[Vu|*
e
[Vu|*
o ud
[Vu|*
o u?

D2 2
/u|D2lnu|2:/| Y +
Q o u

-
Q
/IDzu\2
_/ | D?ul?
= S

2
Q u
+/
Q

2/ 12( u-Vu) - Vu

/ —V(|Vul?)

[Vul*

-2
Q u3

)

\V4 2
[Vl Au for all t € (0, T)az)-
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Then the combination of (3.6) and (3.7) gives
2 Aul? 21
o[Vl N, dl/ [Bul” | dl/ ONVulL s 4, / u|D? Inw? (3.8)
2 Q u 2 o0 8V u 0
for all t € (0 Tmm which substituted into (3.5) gives

2 b

2 2
_ ﬂ 8\Vu| Lisyt !VUI by / Vu- Vo for all t € (0, Tjnaz).
2 o0 oV u

(3.9)

3 and integrating it by parts, for all ¢ €

Multiplying the second equation of (1.3
(0, Trnaz) We obtain

bl d/ bldg |VU‘2
£ dt

_bl/Vu Vv+/uv (Inv+1 b1€¢91 (lnv—i—l)—blgh/wv(lnv—i—l).
Q

Then adding (3.9) and (3.10), and using the facts 0 < u < K, |[v(-,t)|| 1 < Ky, [[w(-, )| < K1
and vinv > —% for all v > 0, we obtain

(3.10)

d 1 ‘VU|2 b1 3 2 2 2 b1 |Vu|2v b]_d2 |V’U|2
— | = — 1 — d D-1 —
dt<2 S +£/Qvnv +2/Q|Vu]+ 1/Qu| nu|+2/Q " + ¢ /Q ”

2 1 1 2
:dl/ st+/ M_bel wo(lnv + 1)
90 2 ) wu § Ja

2 oV u
_ bif b b
L o(lnw + 1) — 12 wv(lnv +1)
¢ o
21 2 (K K KK
< dl/ 9|Vul* 1 / |VU\ -1-(91 / oInv| + 1b1b2 n b1 K K,
2 Joq Ov u e€ &
for all t € (0, Tpqz), which gives (3.1). Then we complete the proof of Lemma 3.1. d

Lemma 3.2. Let the assumptions in Lemma 2.1 hold and (u,v,w) be the solution of (1.3).
Then one has
lolnwv(-t)|| + |Vu(-,t)|| 2 < Ky, for all t € (0, Thaz) (3.11)

t+1 |vv|2 t+7 ~
/ / I / / [D*uf® < K3 for all t € (0, Tinaz), (3.12)
t o v t Q

where Ko and K3 are positive constants independent of x and

and

1 ~ T, — if T,
T := min {1, meM} and Thep =14 T 1 max i oo (3.13)
2 0, if Thee = 00.
Proof. Using Lemma 2.7, one can find a constant ¢; = dyk1 such that
D2 2 4
dl/u|D2 Inul®> > ¢ (/ | uu| + ‘qug > for all t € (0, Thaz),
Q Q
which substituted into (3. ) gives
\VU\Q \DQU\Q \Vu]4 b1d2 ]Vv]Q
dt vlnv +c +
(3.14)

Sdl/ 3|Vu|2 / ‘Vu|2 b1 K—|—91 /| In blKl (bg +K>
2 o0 aV U

for all t € (0, Trnaz). Using Lemma 2.6 and the followmg trace 1nequahty ([34, Remark 52.9])
| HL2 aq) < EHVZHLQ + C.||z HLz(Q for any € > 0, (3.15)
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we can derive by the Cauchy-Schwarz inequality that

dy o|Vul? 1
2 o0 81/

[Vul?
S < ny /8Q N 45 = ais [ 3

D22 4 2
S C/ ’ U| ’vu‘ +62/ ﬂ for all t S (O,Tmax)7
2 u3 Q u

U

which, alongside (3.14), gives

i 1 |Vu|2+b—1 vinv +Cl/ |DQU|2 + |VU’4 b1d2/ ‘VU|2

2 K+90 1Ky (b
Sl +2202/ [Vl Jrb1( + 1)/‘“]”‘Jr 151 ( 2+K> for all # € (0, Ta).
Q u

Using Young’s inequality, Holder’s inequality and the fact ||u(-, )|~ < K, one has

(125 152 e (1520 ()

(3.16)

e 2K|Q
ca [Vl A+l KO o b e (0, T,
4 Jo ud 1
. . . . . 1 3 3
On the other hand, using the Gagliardo-Nirenberg inequality, and the fact [[v2 |72 = [[v]|;, < K}
(see Lemma 2.3), we obtain
b bi(K +0 bi(l1+K+6
€ Ja £ 0 £ Q
C3 1.3 C3
< Zlv2ls + &
¢ [o217s €
C4 1 1 1
< z(IIVv2 lz2llo2 (72 + vz 172) (3.18)
3
caKq 1 caK 7
< Vozl|2 +
e IVezll ¢
b
! QHV *HL2+§’ for all t € (0, Tmaz)-
Then substituting (3.17) and (3.18) into (3.16), we obtain for all ¢ € (0, Tq,) that
d 1 \Vu]z b1 1 \Vu]z b1
% 5 » + g vinv + | = E— + - Uln'U
@ (3.19)

c1 | D?ul? ]Vu|4 3b1d2 |V7J|2
+ — + < ¢,
4 Jq U u3d

%ﬁlflﬂl + 2+ bl%(bf + K). Then applying Gronwall’s inequality to (3.19), one

2 1
1/|vu’+b1/vlnv§07 <1+) for all t € (0, Thaz)
2Ja wu § Ja §

which gives (3.11) by the facts 0 < u < K and vInv > —1 for all v > 0.
Finally, with the fact 0 < u < K, we integrate (3.19) over (t,t+ 7) and use (3.11) to get

t+1 2,12 4 t4r 2
/ / <|D ul |Vu| ) 3b1d2 / Vol ( +> for all t € (0, Thaz),
ud

which gives (3.12). O

with cg :=
has

With Lemma 3.2 in hand, we use coupling energy estimates to obtain the following results.
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Lemma 3.3. Let the assumptions in Lemma 2.1 hold and (u,v,w) be the solution of (1.3).
Then it holds that

(-, )2 + |Vu(-, t)||pe < Ky forall t € (0, Thz), (3.20)
where K4 > 0 is a constant independent of x and t.

Proof. Differentiating the first equation of (1.3) and multiplying the result by 2Vu, then we can

use the identity A|Vu|? = 2Vu - VAu + 2|D?ul? to obtain
(IVul?); = 2d,Vu - VAu — 26,V - V(uv) 4 2|Vu|*(1 — 2u) (321)
= dyA|Vul|? — 2d | D?*ul* — 201 Vu - V(uw) + 2|Vul*(1 — 2u) ‘

for all ¢ € (0, Tjhaz). Then multiplying (3.21) by 2|Vu|? and integrating the result by parts,
along with the fact 0 < u < K, we end up with

d
dt/ |Vu|4+2d1/ |V|vu|“+4d1/ |Vu|?| D?ulf?
Q Q

2

—2d1/ Vu \MV“' ds — 4b, /!VU\QVu-V(uv)—i—él/ V(1 - 2u)

Q

2

:2d1/ |Vu|2‘vu|d5—|—4/ V|t (1 — 2u) (3.22)

a0 ov 9)
+4b1/uvAu|Vu]2+4bl/qu(\Vu|2)-Vu
Q

o 2
<2d1/ w2V ‘W dS+4/ ]Vu|4+4b1K/ (18| Val? + [V |Vl [Vul)
o0

for all t € (0, T)nqz). Using Lemma 2.6 and trace inequality (3.15) again, for all ¢ € (0, T)qz) We
can derive

av 2 d
/ V| Z——— | “’ dS < 4rd[||Vul’||72g9) < 21/|vyw|2\2+c1/ V|, (3.23)

Furthermore, the Holder inequality, the Gagliardo-Nirenberg inequality alongside the fact |||Vu|?||;1 =
[Vull2, < K3 in (3.11) yields that

5+ Cl)/Q V' = (5 + c)[[Vul* 72 < e2l VIVl | 2l Vul?l| 21 + 2l [Vul[17
< o K3|IVIVul*| 2 + 2Ky (3.24)
d
< 21/ \V|Vul?|> 4¢3 for all t € (0, Taz)-
Q
Hence, the combination of (3.23) and (3.24) gives
O|Vul?

2d1/ |vu|2’“‘ds+5/ V! gdl/ VIVul2? + cs for all £ € (0, Tyas).  (3.25)
o0 ov Q Q

With the facts |Au| < v/2|D?u| and V|Vu|? = 2D?u - Vu, we use Young’s inequality to obtain

4b1K/ o (1A Vuf? + [VVul?][Vul)
Q

g4blK\f2/v\vu|2|D2uy+8b1K/u|vu|2|02u|

¢ ¢ (3.26)

:4(\/§+2)61K/D|Vu]2|D2u|
Q

2(2 4 V2)%biK?
dq

< 2d1/ |Vul?| D%ul? + /&\WP for all t € (0, Thnaz)-
Q Q
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Then substituting (3.25) and (3.26) into (3.22), we obtain

/\vuy4 /\vm4+d1/ V|V \2+2d1/ Vul2|D%u?

2(2 4+ V2)2 K>
< i

(3.27)

/ v?|Vul? 4 ¢3 for all t € (0, Thaz)-
Q

Multiplying the second equation of (1.3) by v, integrating the result by parts, and applying
Young’s inequality and the fact ||u(-,?)|/r~ < K, we obtain for all ¢t € (0, Tiae) that

1
d/v2+d2/|Vv|2+bg/1)2w+91/v2:§/vVu-Vv+/uv2
2 dt Q Q Q Q Q Q

gd/\v 24 5 UZqu\2+K/v2
2 Q

2
a 02+/v2+d2/ Vo2 < §/U2wu12+<2f{+1)/v2 for all £ € (0, Tyas). (3.28)
Q 2 JQ Q

Letting y(t) := [, v+ [, |Vul*, and combining (3.27) and (3.28), one has

which gives

y’(t)+y(t)—|—d2/ |Vv|2+d1/ ]V|Vu!2|2—|—2d1/ V2| D2ul?
Q Q Q

2(2 2)202K2%d 24
S( ( +f) 1 2+§ 1)/U2|VU’2+(2K+1)/02+C3
Q Q

dids

(3.29)
22 + V2)22K2dy + £2d 5
< (A VYUK, + (/ > </ yvu\6> + 2K + )]0 </03> ey
dids Q
<csl|v|3s(|Vul|3s + 1) 4¢3 for all t € (0, Thaz),
where ey = 2(2+\/§)2§%£2d2+£2d1 + (2K + 1)|Q|§
Using the Gagliardo-Nirenberg inequality and (3.11), we obtain
2 2 213 2% 2
IVulze = [IVullls < esIVIVUl[| 2 [Vul™ll 7 4 esll[Vul [l L
B ) (3.30)
< s K3 ||V|Vul?(|2, + cs K3 for all t € (0, Taz)-
Then by Young’s inequality and (3.30), one gets
2 2
callollZa (IVullFe +1) < cacs K3 ol 7allVIVul®l|F2 + cales K3 + 1) o)1 7 (3.31)

< d1||V|Vu|2H%2 + 06HU||?£3 + ¢y for all ¢t € (0, Thnaz),

where cg and ¢y are positive constants independent of x and ¢.
On the other hand, using the fact ||vInv||;1 < Ko (see Lemma 3.2), Lemma 2.3 and Lemma
2.5, we have

collvl|3s < dal| V|22 + cg for all t € (0, Trnaz)- (3.32)
Then substituting (3.31) and (3.32) into (3.29), one has

y'(t) +y(t) <ecs+cr+cg forallt € (0, Thax),
which together with Gronwall’s inequality gives (3.20) and completes the proof of Lemma 3.3. O

Lemma 3.4. Let the assumptions in Lemma 2.1 hold and (u,v,w) be the solution of (1.3).
Then there exists a constant K5 > 0 independent of x and t such that

lv(, )|l < Ks  forall t € (0,T)0z)- (3.33)
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Proof. We multiply the second equation of (1.3) by v?, and integrate the result over . Then
with the facts (2.1) and (3.20), we obtain

1d
9 2 3
3% v+ d2/v\VU\ +91/Qv
:2§/v2Vu-Vv+/uvg—bg/v3w
Q Q Q
2
Sdg/?)‘V'l)’z & /US\VquLK/v?’
3
gdg/v\vwz E </ > </ |Vu|4> —I—K/v3
da Q

2
g@/mww 4ﬁwm+mwmbmm6mnm)
Q

which entails that

4dy 3K2§2
HW 172 + 361 [[0][7s < 4

g vlls + oll7s + 3K [vl|Zs

52 (3.34)
< < + Q|2 > [v]|36 for all t € (0, Trnaz)-

3 3
Noting the fact ||v%(, t)||L% = |lv(-, )72 < Kf, and applying the Gagliardo-Nirenberg inequal-
ity and Young’s inequality, we derive that

3K2§2 1 3K2§2 1 3
==+ 1902 ) lollgs = ( —= + 1012 ) vz |7
dQ d2

3.3, 3,2 319
<er (Vo313 12, + 01

(3.35)
3 4
< el Vod||f, + e
4dy
< —HVm 125 + ¢4 for all t € (0, Trnax)-
Then substituting (3.35) into (3.34), we obtain
d, 3 3
%HUHLg +3601||v]|7s < ca forall t € (0, Thnaz),
which gives (3.33) by Gronwall’s inequality. O

Lemma 3.5. Let the assumptions in Lemma 2.1 hold and (u,v,w) be the solution of (1.3).
Then it holds that

(-, )]z < K¢ for all t € (0, Tyaz), (3.36)

where Kg is a positive constant independent of x and t.

Proof. Applying the variation-of-constants formula to the first equation of (1.3), we have
u(-,t) = e Py + /Ot e1 =) y(1 — u) — byuw]ds for all t € (0, Thnaz),
and hence
Vu(-,t) = Vel g + /Ot Vel =98 y(1 — u) — byuwv]ds for all t € (0, Trmag)- (3.37)
Then noting the facts 0 < u < K and |[v(:,t)||zs < K5, one has for all t € (0, Tynaa)

lu(l —u) — bruv||rs < ||lu(l —w)||zs + bi|luv| s < K(1+ K)|Q|% + 0 KK, (3.38)
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Applying the semigroup estimates (2.9) and using (3.38), from (3.37) we have
t
IVu(-, )|z < [|[Ve™ P ug| 1o +/ Vel =2 (1 — ) — byuv]|| e ds
0

1_1

t
< 2726_d1/\1tHu0HLoo + 72/ <1 + (t — s)_E—g) e_dl)‘ltHu(l —u) — byuv||p3ds
0

o0
< 2yolug |z + 2K (1 + K)|Q3 —|—b1KK5]/ (14 (¢ —s)78) et ias
0

< Dyolfunllz + 5K (U K)IOJS + bk K| (14 (dih)ET(1/6))
for all t € (0, Tynaz), which yields
|Vu(-,t)||pee <1 for all t € (0, Thnaz), (3.39)

where ¢1 1= 272 ug e + Z5; [K(1 + K)|Q\% + b0 KK5)(1+ (dlx\l)%F(l/G)), and I' denotes the
Gamma function defined by I'(z) = [;°t* te 'dt.
Then using (3.39) and the facts ||v||;s < K5 and ||u||p~ < K again, we have

[oVaullps + [luvllps < ([Vullee + llulle)l|vllps < (61 + K) K5 for all ¢ € (0, Trnaz).  (3.40)
We rewrite the second equation of (1.3) as follows:
v — doAv + 01v = —EV - (vVu) + uv — brvw. (3.41)
Then applying the variation-of-constants formula to (3.41), for all ¢t € (0, T}54.) one has

t t
v(-, 1) —et(d28—01)y, 5/0 e(t=s)(d2A—01)v7 (vVu)ds +/0 e(t—S)(dzA—Hl)(uv — byvw)ds
t t (342)
§et(d’2A_91)vo o 5/ e(t—s)(dgA—ﬂ)v . (UVU)dS +/ €(t_s)(d'2A_91)u’UdS.
0 0

Applying the LP-L? estimate (2.10), (2.11) and using (3.40), from (3.42) we derive

(-, )l e <[le" =2 gl o +£/0t el N EAIG - (0T u)|| Lo ds
+ /Ot [t~ A=00 | oo ds
<[lwollzoe + 7€ /0t<1 +(t = 5)78)e MBI |y Ty ads
+ 73 /Ot(l +(t = $)75)e M Juo | ads
<|lvol| e + 7a€(er + K)Ks /0 Tt (- 9 e
+y3(e1 + K)Ks /000(1 +(t—s)"3)e 019 s

%5(1 + 91%1“(1/6)) + %(1 + 0§F(2/3))
1 1

for all t € (0, Trnaz), which gives (3.36). This completes the proof of Lemma 3.5. O

<ol + (e + K)Ks [

3.2. Boundedness of ||w(-,t)| /. In this subsection, we shall establish the boundedness of
llw(-,t)|| L. In fact, based on some ideas in [15, Lemma 2.4] and [7, Lemma 2.5], we can obtain
the following regularity results for u directly.

Lemma 3.6. Let the assumptions in Lemma 2.1 hold and (u,v,w) be the solution of the system
(1.3). Then there exists a constant K7 > 0 independent of t such that and for all p > 1

t+7 -
/ | D2, < Ko for all £ € (0, Tonas) (3.43)
t
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and

t
/ eI A, < K7 for all ¢ € (7, Tonas), (3.44)

where T and fmax are defined in (3.13).

Proof. We rewrite the first equation of (1.3) as follows
—d1Au+u = F(z,t)

with F(x,t) := u(2 — u) — bjuv. By Lemma 2.2 and Lemma 3.5, we see that ||F(z,t)| e~ is
uniformly bounded in time. With ug € W2°°(Q), (3.43) follows from [15, Lemma 2.4] directly.
Moreover u(x,7) € C?(Q) for any 7 € (0, Tjnaz) due to the local existence results in Lemma
2.1. Then (3.44) is a consequence of the maximal Sobolev regularity property (see [7, Lemma
2.5]). O

Lemma 3.7. Let the assumptions in Lemma 2.1 hold and (u,v,w) be the solution of (1.3).
Then it holds that

lwlnw(-,t)||r < Ks  for all t € (0, Thaz), (3.45)
where Kg > 0 s a constant independent of t.
Proof We multiply the second equation of (1.3) by —£%, and integrate it by parts to obtain
/ [Vo[? |Avf?
+da
2 dt 0 v
Vol? A
—/| Z| Ut+€/V'(1}VU)U—/uAU—bQ/VU-VU) (3.46)
2Ja v Q v Q 0

2 .
:1/|V12)| vt+£/W+§/Au-AU—/UAU—b2/vv-VU}
2 Q v Q v Q Q Q

for all t € (0, Tinaz)- Using the second equation of (1.3) again, for all ¢ € (0, T},4,) We have

1 [ |Vo|? dy [ |Vo|? & [ |Vo|? 1 [ |Vv|?u
- _% Av— 2 . -
2/9 vz T q v? YT q v2 V- (oVu) + 2/9 v

_bg/ ]Vv|2w_61/ |Vo|?
2 Q v

\VU|ZA _/ |Vv|2Vv Vu f/ |Vv|2Au
2 0 U2

/\VUQ bg/ ]VUP 01/ \VU\Q

Noting that Vv -v = 0 on 012, and using the similar arguments as deriving (3.6), (3.7) and (3.8),
we can derive for all t € (0, T),q4,) that

2 A 2 d o 2
o [ IVOF 5, _ dg/ Aol | 2/ VoL s g, / v|D? Inw|?. (3.48)
2 0 U2 0 v 2 o0 81/ v Q

Moreover, using Lemma 2.7, we can find a constant ¢; = k1ds > 0 such that

DQ 2 4
. (/ ‘U|+/ [Vl ) 2/1}|D21n’u|2 for all £ € (0, Tynaz). (3.49)
Q Q Q

v U

(3.47)

Then substltutmg (3.47), (3.48) and (3.49) into (3.46), we obtain

/|VU\2 /|D2fu!2 |Vt bg/ ]Vv|2 01/ \Vv]z
th [¢) U3

2 2, . 2 2,
S‘l?/ oIVl dg_g/mhf/ Vol A“+/|V”| (3.50)
2 Joo Ov w 2 Ja v? 2 Ja v 2 /g w

- VuA
§/W+§/AU-AU—/uAU—bQ/Vv'vw for all £ € (0, Trnaa)-
Q v Q Q Q
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Multiplying the third equation of (1.3) by %(lnw + 1), and integrating it by parts, for all
t € (0, Tnaz) We obtain
by d b Vwl|? b b
i lnw+2/ Vel :bQ/Vv‘Vw—i-Q/vw(lnw—Fl)—”/w(lnw—i-l)- (3.51)
X dt XJo w Q X X Jo

Then addlng (3.51) with (3.50), and using the facts ||w(-,t)||;1 < Ki (see (2.2)), ||ullp~ +
IVul| oo + ||v||Lee < c2 (see (2.1), (3.36) and (3.39)), we can derive that

d bz/ 1/ ]Vv|2 bg/ 1 \VUP
wlnw + = + (=] whw+ =
dt 2 Q v X Jo 2 Q v

|D2v|2 | Vot by [ |Vwl|?
+ + + —

o v
21 3 ’ i
b 6|VU| Liss §(cz+1)/ Vol +§ Vol Ayl +C2+1/ Al (3:52)
2 Joo Ov v 2 o v° v 2o de
VollA
4t /W+§/’Au|’AU|+62/‘AU’
b 62+1+92 /| bQCQKl for all ¢ € (0, Tnaz)-

Using Lemma 2.6 and the trace inequality (3.15) as well as Young’s inequality, for all ¢ € (0, Tynqz)
one can derive that

dy 8\Vv\2

|C ‘2
—dS < Kkdsy ———dS = 4kds ||V
2 Joo Ov v /em " 2H UQHLQ((?Q

2 2 4 2
8 Q v
2,,12 4
o[ (e )m.
6 Jo v v

Moreover, we can use Young’s inequality and the boundedness of ||v| f to derive that

3 4 2 4
o [0 o [Vl [V a9
2 Joq w02 3 v

+cg for all t € (0, Thnaz)

and

2 2
g/ Vol?| Aul +02+1/ |Vl +562/ ’V’UHA’ng/ ]AuHAvI—i—@/ |Av]
2 )0 v v Q v 2 .
a1 |D2u|2 |Vl / 9
< -
~— 6 /Q< v v3 e Q(U‘Au| +)

D2 2 \V4 4
<Cl/ <‘ 4 +| g‘ >+08/|D2u|2+69 for all t € (0, Tiaz)-
6 Jo v v Q

At last, we can use the Gagliardo-Nirenberg inequality to derive that

b 1+6 ’
2(02++2)/ |lwlnw| < C10/ w2 + ey < / A + iz for all t € (0, Tinga). (3.54)
X Q Q

Then substituting (3.53)-(3.54) into (3.52), for all ¢ € (0, T)naz) one has

1 2 2
d <b2/ lnw—i—/m) + <b2/ / Vol ><C /|D2u|2+6137
dt 2 v

which together with (3.12) and Lemma 2.4 gives

L1 Vol?
/wl / [Vl < ¢y forall t € (0, Thaz),
2 Q v
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and hence
/ wlnw < ¢15 for all t € (0, Thnaz),
Q
which gives (3.45) by noting the fact wlnw > —% for all w > 0. O

Next, we shall establish the boundedness of ||w(-,t)||;2 by studying the coupled energy esti-
mate [, (w? + [Vu]?).

Lemma 3.8. Let the assumptions in Lemma 2.1 hold and (u,v,w) be the solution of (1.3).
Then there is a constant K9 > 0 such that

lw(, )z + V(- t)||pe < Ko, for all t € (0, Th0z)- (3.55)

Proof. Multiplying the third equation of (1.3) by w, and integrating the result by parts, along
with (3.36), we end up with

Vw2+92/w—x/wVv Vw+/ 2
sai e+ 9w i
/|Vw|2 / 2]Vv|2+K6/w2 for all ¢ € (0, Tynaz),
Q

which gives

d/w2+/ |Vw|2+/w2 §X2/w2|Vv|2+(2K6+1)/w2 for all t € (0, Tynaz). (3.56)
dt Ja Q Q Q Q

Noting the fact (3.45), (2.2) and using Lemma 2.5, one has (2K + 1) [ w? < 1 [ |[Vw|? + c1,
which along with (3.56) gives

d
7 w + = /|Vw|2+/w2§x2/w2]Vv|2+cl for all t € (0, Thnaz)- (3.57)
Q Q

On the other hand, using the second equation of (1.3) and the fact VAv-Vuv = LA|Vv|?—|D?v|?,
we obtain

4
4dt/v | /|W| Vo Vo,
—dg/ |Vl Vv-VAv—{/ ]VUPVU-V(V-(UVU))—F/V(uv—bng—ﬁlv)-Vva\z

d 9|Vu|?
=3[ 1of ol has =2 [ 1VIVuRE —ds [ [TuPDA

- §/ Vo2V - V(V - (vVu)) — / (baw + 6;)|Vol* —|—/ u| Vo)
Q Q Q
+ / v(Vu — byVw) - Vo|Vol? for all t € (0, Tz ),
Q
which, together with (3.36) and (3.39), gives

d
dt/ |Vv|4+2d2/ |V|Vv2|2+4d2/ |Vv|2|D2v|2+4/(b2w+01)|VU|4
Q

=2d, / IV \28W”’ ds — 4§/\w?W V(V - (vVu))
+4/U(Vu—bQVw)'Vv]VvP—I—éL/u\Vv]4 (3.58)
Q
2
gde/ Vo \28‘W| ds — 45/ Vo2V - V(V - (vVa))
oN

+c1/ wanyvy3+c1/ |Vv\5+4K/ Vo[t for all t € (0, Thnaz).
Q Q Q
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We can apply Lemma 2.6 and the trace inequality (3.15) to obtain
0 2 1
2d2/ o2 2VVE ‘W‘ is < 4;@/ olids < 2 / VIVl +02/ Vot (3.59)
a0 o0

for all t € (0, Thnaz)- Applying the boundedness of |[u(-, )|z, ||[v(-,t)||Le and ||Vu(-,t)| Lo,
Young’s inequality and Holder’s inequality, for all ¢ € (0, Ti,q.) We can estimate the second term
on the right hand of (3.58) as follows

—45/ IVo|?Vo - V(V - (vVuw))
Q
:45/ vyvu|2'vuv-(vvu)+4§/ |Vo2AuY - (vVu)
Q Q
<o [ [VollVIVOPI(To] +[Au) +es [ [VoR|D20I(T0] +|Au) (3.60)
Q Q
C2 02
gdz/ |V|Vv|2|2+2d2/ |Vv2|D2v|2+3/ |Vv|4—|—3/ |Vo|?|Aul?
Q Q da Jo da Ja
Sdg/ \V|Vv|2\2+2d2/ \V212|D2v]2+64/ |Vv|4+04/ |D?u)?.
Q Q Q Q
Substituting (3.59) and (3.60) into (3.58), and using Young’s inequality, we end up with
d d:
/ |Vv|4+2/ |V|VU|2|2+2(12/ |Vo|?| D?v|?
dt Jo 2 Ja Q
< (4K+CQ+C4)/ \Vv4+cl/ |Vv|3+04/ |D2u4+cl/ V]3| V| (3.61)
Q Q Q Q

< 05/ V|t + 04/ |D?u)t + 01/ |Vol?|Vw| + ¢ for all t € (0, Thnae)-
Q Q Q
Noting ||v(-,t)||z~ < K¢, integrating by parts and using Young’s inequality, one has

(C5+2)/ |W\4—(C5+2)/ Vo]V - Vo
Q Q

_(c5+2>/UV|VU‘2-V’U—(C5+2)/U|VU‘2AU
Q Q

IN

(C5+2)K6/ yV|vu|2|vu|+(C5+2)K6\/§/ |Vo|?| D?v|

1 1
/ V|Vl + ”/w | |D%|2+C7/|w

< 2/ V|Vv|22+2/ ]VU|2|DQU|2+/ \Vv]4+—7 for all t € (0, Trnaz),
4 Ja 2 Jo Q 4

| /\

/\

which gives

2
(cs + )/ ot < & /va 22 4 C;/[Vv|2\D2v\2+c47 for all £ € (0, Tyas).  (3.62)

Moreover, with the integration by parts, we can derive that

/|V’U|6:/\VU4VU-VU
Q Q

:—2/U|VU|2V|VU|2-VU—/UVU|4AU

Q Q

gzxﬁ/ |Vv|3V|Vv|2+\/§K6/ Vol4| D%
Q Q

< 3 [1ve v an ([ [OI90E 4 [ D010 o all ¢ € (0, T
Q Q @
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which gives
/ V| V|2 +/ |Vv|?| D% > cs/ |Vo|® for all ¢t € (0, Thaz)- (3.63)
Q Q Q

Substituting (3.62) and (3.63) into (3.61), and using the fact |Au| < v/2|D?ul, for all t € (0, Tjnaz)
we obtain

d - de
d/ \wu/ yw‘*#“/ ywﬁg04/ \Dzu\4+cl/ VoVl + e
tJo Q 4 Ja Q 0

sd
< C4/ |D?ul* + %82/ [Vol® + 610/ \Vw|? + e11,
which gives for all ¢t € (0, Tiq,) that

d
/yw|4 /|v 44 8 2/ |vv|6<C4/ \D2uy4+cm/ Vul? + en. (3.64)

Multiplying (3.57) by 4c10 and adding it to (3.64), we have

d d
dt (461071) + ‘VU’4) / (461071)2 + |V2}‘4) + Cl()/ |VU}‘2 + — a2 / |V |6
Q Q

§4610X2/ ’LUQIV’UF-FCKL/ ‘D2U‘4+612
Q

d
< 2/ |Vol[© —1—013/ w +C4/ |D?u|* + ¢15 for all t € (0, Tynaz),
Q
which gives

(4010w + ’V’U| ) / (461011)2 + ’V1)|4) +C10/ ]Vw|2
Q

dt
(3.65)
< 013/ w® + 04/ |D2ul* 4+ ¢1o for all t € (0, Thnaz)-
Q Q
On the other hand, applying Lemma 2.5, (2.2) and (3.45), one can show that
013/ wd < 010/ |Vw|2 + c13 for all t € (0, Thnax)- (3.66)
Q Q

Then substituting (3.66) into (3.65), it holds that

d

pn (461011) +|Vol') + / (derow® + [Volt) < 04/ \D?ul* + 1y for all t € (0, Thaz). (3.67)
Q

Notlng that ft+T Jo ID?ul* < ¢15 (see (3.43)), we obtain (3.55) directly by applying Lemma 2.4
to (3.67). Then the proof of Lemma 3.8 is completed. O

Lemma 3.9. Let the assumptions in Lemma 2.1 hold and (u,v,w) be the solution of (1.3).
Then we can find a constant K1y > 0 independent of t such that

lw(-, )]s < Kio for all t € (0, Tnaa)- (3.68)

Proof. Multiplying the third equation of (1.3) by w?, and integrating it by parts, we have

1d

w +2/w!Vw|2+92/w3:2x/w2Vv-Vw+/vw3 for all ¢ € (0, Tnaz). (3.69)
3dt 0 Q 0 Q

Using Young’s inequality and noting the fact ||v(-, )| < K, for all ¢ € (0, T)nqe) one has

2)(/w2Vv-Vw+/vw3§2x/w2|VvHVw|+K6/w3
Q Q Q Q
S/w]Vw|2+X2/w3]Vv]2+K6/w5
Q Q Q

(3.70)
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We substitute (3.70) into (3.69) to obtain

d
— w3+3/w]Vw\2+/w3 §3X2/w3]V1}]2+(3K6+1)/w3 (3.71)
dt Jo Q Q Q Q

for all t € (0, Tnaz). Then using the Gagliardo-Nirenberg inequality and Young’s inequality, and
noting the facts ||w(-,t)|| 2 + |Vl < Ky (see (3.55)), one has

1 1
3X2/ W Vol? < 332 </ w6>2 </ |VU|4>2
Q Q Q

- 3
< 3x°Kg w234

L Ca . (3.72)
< 3 Kger([Ved [allw? | + w2 )
S/w\Vw|2+62 for all t € (0, Tz ),

Q

and
3
K+ 1) [ w' = (3K + Dt

< 3| Vol |5 w7, + [l ]2 (3.73)
< e Vw|llw |7y + w27 :

< / w|Vw|? + ¢4 for all t € (0, Tnaz)-
Q
Then substituting (3.72) and (3.73) into (3.71), we obtain 4 [, w? + [y w® < e3 + c4, which
gives (3.68) directly by Gronwall’s inequality. O

Lemma 3.10. Let the assumptions in Lemma 2.1 hold and (u,v,w) be the solution of the system
(1.3). Then there exists a constant K11 > 0 independent of t such that

IVo(-, t)||pe < Ky1, forall ¢ € (0, Tyaz)- (3.74)

Proof. Using Lemma 2.1, we see that (3.74) clearly holds true for all ¢ € (0, 7] with 7 defined
by (3.13). Then it only remains to show that (3.74) holds for all ¢ € (7, Tynaz)-
First, we can rewrite the second equation of (1.3) as follows:

vy — doAv + v = =V - Vu — EvAu + wv — bavw + (1 — 0)v. (3.75)

Applying the variation-of-constants formula to (3.75), we obtain

t
V(- t) =VelmEA=0y (. 7) - 5/ Vell=) A1 (gy . Vo, + vAu)ds

t
+/ Vel@2AD0E9) 4y — byvw + (1 — 61)v]ds for all ¢ € (T, Trnaz),
which, together with the semigroup estimates in Lemma 2.8, gives

t
IVo(, 1) pee <||Ve ANy 1) oo + € / | Vel =) =A0(Ty - Vu + vAw) || o ds

¢
+ / Vet =) A=D1y — byvw + (1 — 01)v]|| peds

t

<er+ & / (Lt (8= 5)" ) )| T0 - Tu| ads (3.76)

t
+ 672/ (1+ (t = 5)73)e”@NFDE) |y Ayl ods

t
+72/ (14 (t — 8)76)e @MFDE9) |4y — byvw + (1 — 61)v|| fads

=c1 + 11+ I+ 13 forallte (7’, Tmaa:)~
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Noting the fact |Vu(:,t)||re + [|[VV(-, t)|| 2 < 2 from (3.39) and (3.55), one has
Vv - V| s < ||Vl zee | Vo] 2 < 3, for all t € (T, Trnaz)
and hence
t
B= e [ (4 (=9 e BTy T ds

t
< 3 / (1+ (t — )~ 1) (@MFD(=5) g (3.77)

<czg forallte (r,Tha)-
On the other hand, using the facts ||v(,t)||L~ < K and th e‘ﬁ(t_S)HAuHGLG < K7 (see Lemma

3.5 and Lemma 3.6), we derive that

t
I :572/ (14 (t = 5)75)e” BN [y Ay ods

5 1
t 3 t 6
< £ kg ( / (1+(t_s)§>?e“%“<“>ds> ( / e6<”>HAuII%eds> -

5
1 ¢ 6daAy s
< K?g’}/QKG </ (1 + (t — 5)_§)ge—6d25,\1 (t—S)dS>
<c¢y forallte (r,Tha)

At last, using the facts [[u(-,t)[[ze < K (Lemma 2.2), [lv(-,t)|r~ < K¢ (Lemma 3.5) and
lw(:,t)]| 3 < K19 (Lemma 3.9), one has

|luv — bovw + (1 — 01)v||r3 < KK6|Q]% + bo K K10+ (1 + 91)K6|Q]% < ¢ forall t € (1, Tmaz),

and hence
t
Iy = ’yz/ (L+ (= 5)78)e” @D |uy — byvw + (1 — 01)v] pads

t
= 0572/ (1+ (t — 8)~6)e(@MFD)(t=5) g (3.79)

< ¢ for all t € (7, Thnaz)-
Substituting (3.77), (3.78) and (3.79) into (3.76) yields (3.74) and hence completes the proof. [

Lemma 3.11. Let the assumptions in Lemma 2.1 hold and (u,v,w) be the solution of (1.3).
Then it holds that

lw(:,t)||pe < Ko for all t € (0, Thaz), (3.80)

where K15 > 0 is a constant independent of t.

Proof. Using the variation of constants formula to the third equation of (1.3), we have

t
w(-,t) =e"A "Dy —/ =A-DG . (ywVu)ds
0

t
+/ elt=5)(A=1)y, (1 —6y+v)ds for all t € (0, Trnaz)-
0
Using the boundedness of ||v(-,%)||jy1.c and [Jw(-,t)| 3, we can find two positive constants c;
and ¢y such that
IxwVollps < x[[VollLe|[wllps < ei for all ¢ € (0, Trmaz),

and
|lw(l =60z 4+ v)||s < (1402 + ||v||pe)||w] s < e2 for all t € (0, Traz)-
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Then using the estimates in Lemma 2.8, we have

t
[w(-,t)[[poe <[le" ™ Dawgl|poe +/ e =AU - (xw V)| o ds
0
t
+ / He(t_s)(A_l)w (1—02+v) H
0 L
t
<[lwol|z + / (1+ (¢ — )~ %)e~ D) |y Vo jads
0
t
+/ (14 (t = 5)" 5= (1 — By + v) yods
0
t
<|lwo ||z~ + 01/ (1+(t— 5)—%)6—(A1+1)(t—s)d8
0

t
+ 02/ (1+(t— 3)_%)6_('5_5)613
0
<cg for all t € (0, Tnaz),
which yields (3.80). Then the proof of Lemma 3.11 is completed. O

Proof of Theorem 1.1. The combination of Lemma 2.2 and (3.39) gives
lu(-, t)|lwree < ¢ for all t € (0, Thaz)-

From Lemma 3.5 and Lemma 3.10, we can find a constant ca > 0 such that ||v(-, )|y, < co.
At last, noting Lemma 3.11, we can summary the results to obtain that

[u( )llwree + 0 ) lwree + lw(, )|z < ez for all ¢ € (0, Tinaa),

which together with the extension criterion in Lemma 2.1 proves Theorem 1.1. ([

4. GLOBAL STABILITY

In this section, we shall study the global stability of solutions by constructing some proper
Lyapunov functionals alongside the following LaSalle’s invariance principle ([23, Theorem 3]).
The Lyapunov functions for the predator-prey ODE systems can be constructed in a routine
ways (cf. [b, 14]), and they are directly extendable to the corresponding PDE models with
diffusion (cf. [9]) or prey-taxis (cf. [1, 17]). Here we shall further develop those ideas to the
spatial food chain models.

4.1. Case of prey-only. In this subsection, we first study the global stability of prey-only
steady state (f; > 1). In this case, we know that the system (1.3) has only two possible steady
states: (0,0,0) and (1,0,0). One can easily check that the steady state (0,0,0) is linearly
unstable, while the steady state (1,0, 0) is linearly stable. Hence it is nature to studying whether
or not (1,0,0) is globally asymptotically stable in the case > 1. To this end, we introduce the
following energy functional:

Ei(t) == Sl(uﬂ),w):/(u—l—lnu)—i—bl/v—l—blbg/w.
Q Q Q

Lemma 4.1. Let (u,v,w) be the solution of (1.3) obtained in Theorem 1.1. Then if 61 > 1, it
holds that

Then we have the following results:

Jim ([Juls8) = Al +[lo( D[z + [[w (- Dl[2e) = 0.

Proof. First, we show that & (u,v,w) > 0 and & (u,v,w) = 0 if and only if (u,v,w) = (1,0,0).
In fact, letting ¢(2) = z — fi In z and using Taylor’s expansion, for all positive f and f, one has

Foto= gL — o) = o) = SN - 1)+ 500G - 1 = Ly - £ R )

feo
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where 7 is between f and f.. Then letting f = v and f, = 1, from (4.1) one can find 7; between
u and 1 such that .
u—1—Inu= —2(u—1)2 >0,
2n7
and here “ =7 holds if and only if v = 1. Hence £(1,0,0) = 0 and & (u,v,w) > 0 for any
(u,v,w) # (1,0,0) since v,w > 0.
Moreover, from the equations in (1.3), we have

d u—1
dtgl(t)_/g " ut—l—bl/ﬂvt+b1b2/ﬂwt
2
=—d; ‘wj —/(u—1)2—b1(01—1)/v—b1b262/w,
Q u Q Q Q

which together with the condition 6; > 1 gives

d
— <
dtgl(t) = 07

where “ =" holds if and only if (u,v,w) = (1,0,0).
Then LaSalle’s invariance principle ([23, Theorem 3]) implies that the trajectory (u,v,w)
converges to (1,0,0) as t — oo in L.

0

4.2. Case of semi-coexistence. In this subsection, we shall study the global stabilization of
steady state in the case of 61 < 1 and 6; + 102 > 1. To this end, we define the following
Lyapunov functional:

Ea(t) ::52(u,v,w):/ (u—@l—ﬂllnu>—|—b1/ (v—v*—v*lnv*)—i—blbg/w,
Q th Q v Q

where v* = % > 0.

Lemma 4.2. Let (u,v,w) be the solution of (1.3) obtained in Theorem 1.1. Then if 0; < 1,
01+ 0102 > 1 and

4dydyfy > €2(1 — 0) ||u)? , (4.2)
we have
—
by

. 1
lim (Huc,t) Ol + ()

t—o00

o + Hw(-,wum) 0.

Proof. First, we can use the Taylor’s expansion as in (4.1) to find a 7, between u and 6; such
that

u 0
u—91 —911119*1 = 2—771%(u—91)2 ZO
and “ =" holds if and only if u = #;. Similarly, v —v* —v*In 5 > 0 and “ =" holds iff v = v™*.
Hence & (61, %,0) =0 and & (u,v,w) > 0 for all (u, v, w) # (01, %, ).
On the other hand, using the definition of £(t) and the equations of (1.3), we have

1-6,

d _6 v
—&(t) :/ “ Ly + bl/ — by 4 b1b2/ wy
dt o) u Q v o)

|Vul|? / |Vo|? / Vu - Vo
=—d,0 —dy(1 -0 1-46
1 1/Q 2 2( 1) o\ 02 + &( 1) o

v

I

+ [ (u=61)(1 —u—b)+ by po =0 (w—01) +ba(1 — 61 — b16s) | w.
J f -5 Q

1

-~

I3
(4.3)
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Letting X; = (%7 Vo) then we can rewrite I; as follows

d161 776(1;91% )

11:—/X1A1XT, with A1 = | 1001
O 1 M do(1 — 0y)

After some calculations, one can check that if (4.2) holds, the matrix A; is positive definite and
hence there exists a positive constant a; > 0 such that

2 2
I Z—/X1A1Xf§ —a1/ <|VU| + Vol ) (4.4)
Q Q

u? v2

On the other hand, we can rewrite the term Iy as follows

IQ=/<u—01)(91—u+1—91—b11))
Q

1-140
+bl/ <’U— 1>(u—91)+b2(1—91—6192)/w (4.5)
0 by 0
= — / (u — 01)2 +b2(1 -0, — b1(92)/ w.
Q Q
Substituting (4.4) and (4.5) into (4.3), with the fact 8 + b162 > 1, one has
d
—52(15) = —/ XlAleT — /(u — 91)2 + bQ(l — 01 — b192)/ w <0,
dt 0 Q Q
and “ =" if and only if u = 0;,w = 0 and Vv = 0. Noting that Vv = 0 implies v = v for some

constant v > 0. Due to (u,v,w) = (01,7,0) is a solution of (1.3), and hence it follows that
91(1 — 01 — bll_)) =0,

which implies v = 1;91. Hence 4&5(t) = 0 implies (u,v,w) = (61, 1201 ).

by
Then applying the LaSalle’s invariance principle ([23, Theorem 3]), we see that the solution
(u,v,w) converges to (61, 1;191 ,0) as t — oo in L. O

4.3. Case of coexistence. In this subsection, we shall show that the coexistence steady state
(g, Vs, wy) defined by (1.4) is globally stable in the case of §; < 1 and 61 + bef2 < 1. To this
end, we construct the following energy functional:

Es(t) := Es(u,v,w) = Jyu(t) + b1 Tp(t) + b1ba T (t),

Je(t) :/ (Z—E*—E*ln€> , =, v,w.
Q £y

Lemma 4.3. Let (u,v,w) be the solution of (1.3) obtained in Theorem 1.1. Then if the param-
eters satisfy 01 < 1 and 01 4+ b10s < 1 as well as

where

Adydouy vy, >E2b102||ul|2 e + X2 boditsws|[v]|3 oo (4.6)
Then it holds that
Jim (o=l + o = vl + [ — willg) = 0.
Proof. By the same arguments in Lemma 4.1 and Lemma 4.2, we can use (4.1) to show that

E3 (U, Vi, wy) = 0 and E3(u, v, w) > 0 for all (u,v,w) # (U, Vs, Wy).
Moreover, using the fact that 1 — u, — byv. = 0, from the first equation of (1.3) we derive

Cut) = /Q (1- ) w

:—dlu*/QVuu2|2—/Q(u—u*)2—h/ﬂ(u—u*)(v—v*)-
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Similarly, using the second equation of (1.3) alongside the fact 1 = u, — baw, to obtain

bl%jv(t) = bl/ﬂ (1 - %) vy

2 .
= —dab1vs / Vol + &by / Vu- Vo + b / (v —vy)(u — bow — 07)
Q Q Q

v2 v

|Vo|? Vu - Vv (48)
= —dob1 v, / 5~ + &§uiby / + by / (u— uy) (v — vy)
Q v Q v Q
— biby / (v —v) (W — wy).
Q
With the fact v, = 03 and the third equation of (1.3), we have
d Wy
b1bo— Jw(t) = b1b 1——
letj() 12/9( w>wt
Vuwl|? Vv -V
= —w*blbg/ | U;‘ —i—w*blngf w+/(w—w*)(v—92) (4.9)
Q w Q w Q
2 .
= w*blbg/ |Vu2/\ + Xw*b1b2/ V- Vw + b1boy / (v —ve) (W — wy).
o w Q w Q
Combining (4.7), (4.8) and (4.9), we have
d
—53@) == —/ X2A2X2T—/(u—u*)2, (410)
where X5 = (%, %, %) and As is a symmetric matrix defined by
dlu* _7517120*“ 0
Ay = _fblé)*u doby vy _Xblbéw*v
0 —% blbg’w*
If (4.6) holds, we can check that
diue =82 b, (ddidou, — E2b1v.u?)  bros(ddidyus — E2b1o.|ulli)
Eb1vsu = > >0
—7 5 dzblv* 4 4
and
QbSb . 2,2 2b2b2d . 2,2
| As)| :dldgb%bgu*v*w* _ §“bibowsviu X0t usw, v
4 4
b2byw,
—1 iw (4d1d2u*v* — &2b1v2u® — X2b2d1u*w*02)
bibow, 21 2y, (12 2 2
Z 1 (4d1d2u*v* —f blv*HuHLoo — X bgdlu*w*HUHLoo) > 0,
which implies the matrix As is positive definite and hence there exists a positive constant o
such that
T [Vul? | [Vo]? | [Vl
_/QX2A2X2 < —042/Q ( 2 + 2 + 2 . (411)

Substituting (4.11) into (4.10), we obtain

d 2 2 2

75‘3(75) < _a2/ (VU| + |V'§| + |V’l;]‘ > _/(u_u*)Q,
Q Q

dt u2 v v

which implies %Sg(t) <0 for all w,v,w and u = uy, Vv =0 and Vw = 0 if %53(75) = 0.
Noting that Vv = 0 and Vw = 0 imply that

v =10, and w = Wy,
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where v, and @, are positive constants. Noting that (u,v,w) = (us, s, W) is the solution of
(1.3), then it has that

U (1 — uy — b104) =0,

Vs (Use — boWy — 61) =0, (4.12)
W, (3 — 02) = 0.
Solving the system (4.12) with u, =1 — b1602, we obtain
1— —
Uy = 09 = v, and ﬁ)*zyzw*.
2

Hence if %53@) =0, then (u,v,w) = (us, vy, ws). Using the LaSalle’s invariance principle ([23,

Theorem 3]), we know that the coexistence steady state (u,vs, wy) is globally asymptotically
stable. 0

Proof of Theorem 1.2. Theorem 1.2 is a consequence of Lemma 4.1, Lemma 4.2 and Lemma
4.3. ]
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