Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/99101
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorDong, Yen_US
dc.creatorLi, Xen_US
dc.creatorQiao, Zen_US
dc.creatorZhang, Zen_US
dc.date.accessioned2023-06-14T01:00:19Z-
dc.date.available2023-06-14T01:00:19Z-
dc.identifier.issn0168-9274en_US
dc.identifier.urihttp://hdl.handle.net/10397/99101-
dc.language.isoenen_US
dc.publisherElsevier B.V.en_US
dc.rights© 2023 IMACS. Published by Elsevier B.V. All rights reserved.en_US
dc.rights© 2023. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.rightsThe following publication Dong, Y., Li, X., Qiao, Z., & Zhang, Z. (2023). Stability and convergence analysis of the exponential time differencing scheme for a Cahn–Hilliard binary fluid-surfactant model. Applied Numerical Mathematics, 190, 321–343 is available at https://doi.org/10.1016/j.apnum.2023.05.004en_US
dc.subjectBinary fluid-surfactant modelen_US
dc.subjectExponential time differencing schemeen_US
dc.subjectLinear convex splittingen_US
dc.subjectUnconditional energy stabilityen_US
dc.subjectOptimal error estimateen_US
dc.titleStability and convergence analysis of the exponential time differencing scheme for a Cahn–Hilliard binary fluid-surfactant modelen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage321en_US
dc.identifier.epage343en_US
dc.identifier.volume190en_US
dc.identifier.doi10.1016/j.apnum.2023.05.004en_US
dcterms.abstractIn this paper, we focus on the Cahn–Hilliard type of binary fluid-surfactant model, which is derived as the H−1 gradient flow system of a binary energy functional of the fluid density and the surfactant density. By introducing two stabilization terms appropriately, we give a linear convex splitting of the energy functional, and then establish the exponential time differencing scheme with first-order temporal accuracy in combination with the Fourier spectral approximation in space. To guarantee the energy stability, we treat the nonlinear term partially implicitly in the equation for the fluid and evaluate the nonlinear term in the equation for the surfactant completely explicitly. The developed scheme is linear and decoupled, and the unconditional energy stability, the mass conservation, and the convergence are proved rigorously in the fully discrete setting. Various numerical experiments illustrate the stability and convergence of proposed scheme, along with the effectiveness in the long-time simulations.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationApplied numerical mathematics, Aug. 2023, v. 190, p. 321-343en_US
dcterms.isPartOfApplied numerical mathematicsen_US
dcterms.issued2023-08-
dc.identifier.scopus2-s2.0-85159224612-
dc.identifier.eissn1873-5460en_US
dc.description.validate202306 bcchen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumbera2106-
dc.identifier.SubFormID46621-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextHong Kong Polytechnic University; CAS AMSS-PolyU Joint Laboratory of Applied Mathematicsen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Dong_Stability_Convergence_Analysis.pdfPre-Published version2.32 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

108
Last Week
1
Last month
Citations as of Nov 9, 2025

SCOPUSTM   
Citations

3
Citations as of Nov 21, 2025

WEB OF SCIENCETM
Citations

4
Citations as of Nov 27, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.