Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/99059
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorFu, Gen_US
dc.date.accessioned2023-06-12T09:04:00Z-
dc.date.available2023-06-12T09:04:00Z-
dc.identifier.issn1862-9679en_US
dc.identifier.urihttp://hdl.handle.net/10397/99059-
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.rights© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022en_US
dc.rightsThis version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use (https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms), but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1007/s11579-022-00328-2.en_US
dc.subjectConsumptionen_US
dc.subjectMartingale optimality principleen_US
dc.subjectMean field gameen_US
dc.subjectPortfolio gameen_US
dc.titleMean field portfolio games with consumptionen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage79en_US
dc.identifier.epage99en_US
dc.identifier.volume17en_US
dc.identifier.issue1en_US
dc.identifier.doi10.1007/s11579-022-00328-2en_US
dcterms.abstractWe study mean field portfolio games with consumption. For general market parameters, we establish a one-to-one correspondence between Nash equilibria of the game and solutions to some FBSDE, which is proved to be equivalent to some BSDE. Our approach, which is general enough to cover power, exponential and log utilities, relies on martingale optimality principle in Cheridito and Hu (Stochast Dyn 11(02n03):283–299, 2011) and Hu et al. (Ann Appl Probab 15(3):1691–1712, 2005) and dynamic programming principle in Espinosa and Touzi (Math Financ 25(2):221–257, 2015) and Frei and dos Reis (Math Financ Econ 4:161–182, 2011). When the market parameters do not depend on the Brownian paths, we get the unique Nash equilibrium in closed form. As a byproduct, when all market parameters are time-independent, we answer the question proposed in Lacker and Soret (Math Financ Econ 14(2):263–281, 2020): the strong equilibrium obtained in Lacker and Soret (Math Financ Econ 14(2):263–281, 2020) is unique in the essentially bounded space.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationMathematics and financial economics, Mar. 2023, v. 17, no. 1, p. 79-99en_US
dcterms.isPartOfMathematics and financial economicsen_US
dcterms.issued2023-03-
dc.identifier.scopus2-s2.0-85144479882-
dc.identifier.eissn1862-9660en_US
dc.description.validate202306 bcwwen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumbera2112-
dc.identifier.SubFormID46635-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNSFC Grant No.12101523en_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Fu_Mean_Field_Portfolio.pdfPre-Published version500.13 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

107
Last Week
0
Last month
Citations as of Nov 9, 2025

Downloads

74
Citations as of Nov 9, 2025

SCOPUSTM   
Citations

12
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

10
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.