Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/98885
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorZhang, Len_US
dc.creatorLi, Xen_US
dc.date.accessioned2023-06-02T00:30:18Z-
dc.date.available2023-06-02T00:30:18Z-
dc.identifier.issn0167-6911en_US
dc.identifier.urihttp://hdl.handle.net/10397/98885-
dc.language.isoenen_US
dc.publisherElsevier BVen_US
dc.rights©2023 Elsevier B.V. All rights reserved.en_US
dc.rights© 2023. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.rightsThe following publication Zhang, L., & Li, X. (2023). Mean–variance portfolio selection under no-shorting rules: A BSDE approach. Systems & Control Letters, 177, 105545 is available at https://doi.org/10.1016/j.sysconle.2023.105545en_US
dc.subjectMean–variance portfolio selectionen_US
dc.subjectShort-selling prohibitionen_US
dc.subjectEfficient frontieren_US
dc.subjectHJB equationen_US
dc.subjectRecursive utilityen_US
dc.subjectViscosity solutionen_US
dc.titleMean–variance portfolio selection under no-shorting rules : a BSDE approachen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume177en_US
dc.identifier.doi10.1016/j.sysconle.2023.105545en_US
dcterms.abstractThis paper revisits the mean–variance portfolio selection problem in continuous-time within the framework of short-selling of stocks is prohibited via backward stochastic differential equation approach. To relax the strong condition in Li et al. (Li et al. 2002), the above issue is formulated as a stochastic recursive optimal linear–quadratic control problem. Due to no-shorting rules (namely, the portfolio taking non-negative values), the well-known “completion of squares” no longer applies directly. To overcome this difficulty, we study the corresponding Hamilton–Jacobi–Bellman (HJB, for short) equation inherently and derive the two groups of Riccati equations. On one hand, the value function constructed via Riccati equations is shown to be a viscosity solution of the HJB equation mentioned before; On the other hand, by means of these Riccati equations and backward semigroup, we are able to get explicitly the efficient frontier and efficient investment strategies for the recursive utility mean–variance portfolio optimization problem.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationSystems and control letters, July 2023, v. 177, 105545en_US
dcterms.isPartOfSystems and control lettersen_US
dcterms.issued2023-07-
dc.identifier.eissn1872-7956en_US
dc.identifier.artn105545en_US
dc.description.validate202306 bcchen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumbera2056-
dc.identifier.SubFormID46403-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Zhang_Mean–variance_Portfolio_Selection.pdfPre-Published version1.52 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

118
Last Week
16
Last month
Citations as of Aug 17, 2025

WEB OF SCIENCETM
Citations

4
Citations as of Aug 28, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.