Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/98653
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorLi, Ben_US
dc.creatorSun, Wen_US
dc.date.accessioned2023-05-10T02:00:54Z-
dc.date.available2023-05-10T02:00:54Z-
dc.identifier.issn1705-5105en_US
dc.identifier.urihttp://hdl.handle.net/10397/98653-
dc.language.isoenen_US
dc.publisherGlobal Science Pressen_US
dc.rights© 2017 Institute for Scientific Computing and Informationen_US
dc.rightsThis is the accepted version of the following article: Li, B., & Sun, W. (2017). Maximal Lp error analysis of FEMs for nonlinear parabolic equations with nonsmooth coefficients. Int. J. Numer. Anal. Model, 14(4-5), 670-687, which has been published in https://www.global-sci.org/intro/article_detail/ijnam/10055.html.en_US
dc.subjectFinite element methoden_US
dc.subjectNonlinear parabolic equationen_US
dc.subjectPolyhedronen_US
dc.subjectNonsmooth coefficientsen_US
dc.subjectMaximal Lp-regularityen_US
dc.subjectOptimal error estimateen_US
dc.titleMaximal Lp error analysis of FEMs for nonlinear parabolic equations with nonsmooth coefficientsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage670en_US
dc.identifier.epage687en_US
dc.identifier.volume14en_US
dc.identifier.issue4-5en_US
dcterms.abstractThe paper is concerned with Lp error analysis of semi-discrete Galerkin FEMs for nonlinear parabolic equations. The classical energy approach relies heavily on the strong regularity assumption of the diffusion coefficient, which may not be satisfied in many physical applications. Here we focus our attention on a general nonlinear parabolic equation (or system) in a convex polygon or polyhedron with a nonlinear and Lipschitz continuous diffusion coefficient. We first establish the discrete maximal Lp-regularity for a linear parabolic equation with time-dependent diffusion coefficients in L∞(0,T;W1,N+ϵ)∩C(Ω×[0,T]) for some ϵ>0, where N denotes the dimension of the domain, while previous analyses were restricted to the problem with certain stronger regularity assumption. With the proved discrete maximal Lp-regularity, we then establish an optimal Lp error estimate and an almost optimal L∞ error estimate of the finite element solution for the nonlinear parabolic equation.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationInternational journal of numerical analysis and modeling, 2017, v. 14, no. 4-5, p. 670-687en_US
dcterms.isPartOfInternational journal of numerical analysis and modelingen_US
dcterms.issued2017-
dc.identifier.eissn2617-8710en_US
dc.description.validate202305 bcchen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberAMA-0520-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNSFCen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS6763381-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Li_Maximal_Lp Error_Analysis.pdfPre-Published version965.48 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

57
Citations as of Apr 14, 2025

Downloads

21
Citations as of Apr 14, 2025

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.