Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/98645
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorLeykekhman, Den_US
dc.creatorLi, Ben_US
dc.date.accessioned2023-05-10T02:00:51Z-
dc.date.available2023-05-10T02:00:51Z-
dc.identifier.issn0008-0624en_US
dc.identifier.urihttp://hdl.handle.net/10397/98645-
dc.language.isoenen_US
dc.publisherSpringer Milanoen_US
dc.rights© Springer-Verlag Italia 2016en_US
dc.rightsThis version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use (https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms), but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1007/s10092-016-0198-8.en_US
dc.subjectStabilityen_US
dc.subjectMaximum normen_US
dc.subjectFinite element methoden_US
dc.titleMaximum-norm stability of the finite element Ritz projection under mixed boundary conditionsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage541en_US
dc.identifier.epage565en_US
dc.identifier.volume54en_US
dc.identifier.issue2en_US
dc.identifier.doi10.1007/s10092-016-0198-8en_US
dcterms.abstractAs a model of the second order elliptic equation with non-trivial boundary conditions, we consider the Laplace equation with mixed Dirichlet and Neumann boundary conditions on convex polygonal domains. Our goal is to establish that finite element discrete harmonic functions with mixed Dirichlet and Neumann boundary conditions satisfy a weak (Agmon–Miranda) discrete maximum principle, and then prove the stability of the Ritz projection with mixed boundary conditions in L∞ norm. Such results have a number of applications, but are not available in the literature. Our proof of the maximum-norm stability of the Ritz projection is based on converting the mixed boundary value problem to a pure Neumann problem, which is of independent interest.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationCalcolo, June 2017, v. 54, no. 2, p. 541-565en_US
dcterms.isPartOfCalcoloen_US
dcterms.issued2017-06-
dc.identifier.scopus2-s2.0-84978780346-
dc.identifier.eissn1126-5434en_US
dc.description.validate202305 bcchen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberAMA-0490-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNSFC; Alexander von Humboldt Foundationen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS6660709-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Li_Maximum-Norm_Stability_Finite.pdfPre-Published version904.29 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

54
Citations as of Apr 14, 2025

Downloads

35
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

6
Citations as of Sep 12, 2025

WEB OF SCIENCETM
Citations

5
Citations as of Oct 10, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.