Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/98605
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorLv, Sen_US
dc.creatorYou, Men_US
dc.creatorLin, Hen_US
dc.creatorLian, Hen_US
dc.creatorHuang, Jen_US
dc.date.accessioned2023-05-10T02:00:37Z-
dc.date.available2023-05-10T02:00:37Z-
dc.identifier.issn0047-259Xen_US
dc.identifier.urihttp://hdl.handle.net/10397/98605-
dc.language.isoenen_US
dc.publisherAcademic Pressen_US
dc.rights© 2018 Elsevier Inc. All rights reserved.en_US
dc.rights© 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/.en_US
dc.rightsThe following publication Lv, S., You, M., Lin, H., Lian, H., & Huang, J. (2018). On the sign consistency of the Lasso for the high-dimensional Cox model. Journal of Multivariate Analysis, 167, 79-96 is available at https://doi.org/10.1016/j.jmva.2018.04.005.en_US
dc.subjectCox proportionalen_US
dc.subjectEmpirical processen_US
dc.subjectHazard modelen_US
dc.subjectLassoen_US
dc.subjectMutual coherenceen_US
dc.subjectOracle propertyen_US
dc.subjectSparse recoveryen_US
dc.titleOn the sign consistency of the Lasso for the high-dimensional Cox modelen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage79en_US
dc.identifier.epage96en_US
dc.identifier.volume167en_US
dc.identifier.doi10.1016/j.jmva.2018.04.005en_US
dcterms.abstractIn this paper we study the ℓ1-penalized partial likelihood estimator for the sparse high-dimensional Cox proportional hazards model. In particular, we investigate how the ℓ1-penalized partial likelihood estimation recovers the sparsity pattern and the conditions under which the sign support consistency is guaranteed. We establish sign recovery consistency and ℓ∞-error bounds for the Lasso partial likelihood estimator under suitable and interpretable conditions, including mutual incoherence conditions. More importantly, we show that the conditions of the incoherence and bounds on the minimal non-zero coefficients are necessary, which provides significant and instructional implications for understanding the Lasso for the Cox model. Numerical studies are presented to illustrate the theoretical results.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationJournal of multivariate analysis, Sept 2018, v. 167, p. 79-96en_US
dcterms.isPartOfJournal of multivariate analysisen_US
dcterms.issued2018-09-
dc.identifier.scopus2-s2.0-85046629351-
dc.identifier.eissn1095-7243en_US
dc.description.validate202305 bcchen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberAMA-0348-
dc.description.fundingSourceSelf-fundeden_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS13242003-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Huang_Sign_Consistency_Lasso.pdfPre-Published version941.63 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

85
Citations as of Apr 14, 2025

Downloads

102
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

3
Citations as of Aug 1, 2025

WEB OF SCIENCETM
Citations

3
Citations as of Oct 10, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.