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Abstract

In this paper we investigate the behavior of the `1-penalized partial likelihood estimation

for the sparse high dimensional Cox’s proportional hazards model. Particular, we investigate

how the `1-penalized partial likelihood estimation recovers the sparsity pattern and the

conditions under which the sign support consistency is guaranteed. We establish sign recovery

consistency and `∞-error bounds for the Lasso partial likelihood estimator under mild and

interpretable conditions, including mutual incoherence conditions. More importantly, we

show that the conditions of the incoherence and bounds on the minimal non-zero coefficients

are necessary, which providing significant and instructional implications for understanding

the proposed methods.

Key Words and Phrases: Sparse recovery; Cox proportional hazard model; Oracle prop-

erty; Empirical Process; Mutual coherence; the Lasso.

1 Introduction

High-dimensional data, including high-throughput genomic data and credit risk data, are be-

coming increasingly available as data collection technology evolves. Finding significant genetic

risk factors for clinical outcomes, such as the age of disease onset or time to death, is fundamen-

tal to modern biostatistics, since survival outcomes are most often clinical endpoints. In view

of the central role of the Cox proportional model in survival analysis, its widespread applica-

tions and the proliferation of ultra-high-dimensional covariates, it is quite interesting to study

high-dimensional theory in the Cox model.

When the number of features p far exceeds the sample size, without any additional structure,

it is known that many standard approaches, for example, least squared error, classification by

1

https://doi.org/10.1016/j.jmva.2018.04.005 This is the Pre-Published Version.

© 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/



linear or quadratic discriminant analysis and principal component analysis, are not consistent

unless the ratio p/n goes to zero. To handle high dimensional problems, various sparse models

which aim to select only a small set of relevant variables from a huge number of features, have

become more and more popular owing to the model interpretability, theory support and efficient

computation.

Regularization method has been a powerful tool of sparse modelling and variable selection.

Depending on the type of penalty functions that are used, the regularization methods can be

grouped into two classes: convex and non-convex. A typical example of a convex penalty is the

`1−penalty or Lasso-type penalty, which gives rise to the `1−regularization methods (Tibshirani,

1996). The convexity of Lasso-type penalty methods makes the implementation efficient and

facilitates the theoretical analysis. Lasso-type method has been viewed as a standard approach

to solve sparse problems. During the last decade, much work on the Lasso-type methods have

appeared greatly beyond linear regression, and particularly Tibshirani (1997) initially proposed

the Lasso programme for the Cox model. In recent years, we have witnessed several work on

the use of `1-constraints for the Cox related models in the presence of sparsity pattern. For

example, Kong et al. (2014) took an approach of V., D. Geer (2008) to derive prediction and

`1 estimation error bounds for the Lasso in the Cox models. Lemler (2012) considered the joint

estimation of the baseline hazard function and regression coefficients in the Cox model, and

established theoretical guarantees for the prediction performance and error bounds of the Lasso

estimator under very weak conditions and some incoherent conditions, respectively. Under

natural extensions of the compatibility and cone invertibility of the Hessian matrix, Huang

et al. (2013) established `q estimation error bounds of the Lasso estimator for the sparse Cox

proportional hazard model with time-dependent covariates when q ≥ 1.

Despite the aforementioned developments, some important high-dimensional theory that can

provide strong performance guarantees for the Lasso estimator in the sparse Cox model is still

lacking. Specifically, issues related to sparse pattern recovery has not been addressed to date.

The problem of sparse pattern recovery can be stated as follows: given sparse, how to recover the

positions of its non-zero entries, and further how to guarantee the sign support consistency of

estimator. This problem, also known as support recovery or model selection consistency, arises

in a variety of contexts, including compressed sensing (Donoho, 2006), sparse approximation

(DeVore and Lorentz, 1993) and structure estimation in graphical models (Merinshausen and

Buhlmann, 2006). Efficient discovery of sparsity patterns is a central concern in high dimensional

data, and considerable effort for least square setting has been devoted, such as Zhao and Yu

(2006), Merinshausen and Buhlmann (2006), Zhang and huang (2008), and Wainwright (2009).

It is known that `q estimation consistency does not guarantee exact recovery of the un-

derlying sparsity pattern, and studying the problem of sparse pattern recovery for survival

models is more involved than that for least square setting, since high dimensional inference for

the Cox model involves not only the dynamic processes, semi-parametric nature and censoring

mechanism of survival data, but also the non-quadratic Hessian matrix. A mathematical and
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systematic study of statistical inference on high dimensional survival models has only started

in recent years. In particular, Lin and Lv (2013) considered the additive hazard model in high

dimensional setting, and investigated the sparse pattern recovery and estimation problems based

on a class of general penalties, including the Lasso. A critical difference from the Cox model,

the additive hazard model leads to a least square-type loss function and hence the key quantity

(the Hessian matrix) for statistical inference is independent of the estimating coefficient. By

contrast, the Hessian matrix involved in the Cox model is a function of estimating coefficient,

which is more involved and needs new technical tools. For the high-dimensional Cox model,

Bradic et al. (2011) considered estimation as well as variable selection and oracle properties

using general concave penalties, including the Lasso as well. Although theirs results are quite

broad and provide deep insights on the performance of various regularization methods in the

Cox model, they required very strict conditions for deriving theoretical results, for example,

they imposed a random condition on a large empirical covariance matrix in a neighborhood of

the true regression coefficient. Moreover, all of the above mentioned work only provide sufficient

conditions to guarantee oracle properties, and they do not consider the necessity of those con-

ditions they imposed. Since most of conditions for high dimensional inference are often hard to

verify, providing sufficient and necessary conditions for statistical inference has significant and

instructional implications for understanding the proposed methods.

In view of the growing importance of finding significant genetic risk factors for survival

outcomes, this paper aims at establishing a complete characterization for support recovery con-

sistency of the Lasso Cox estimator. Under mild, interpretable conditions, we first establish

the oracle property of the Lasso estimator, specially we provide sufficient conditions for sign

recovery to succeed with high probability. Two of critical conditions to guarantee sign recovery

consistency refer to mutual incoherence condition (Zhao and Yu, 2006) and the minimum value

of the true coefficient. Furthermore, we can show that, the sign recovery will fail with probability

at least 1/2 if either of two above conditions does not hold. To the best of our knowledge, there

is no work on this topic in survival data.

The rest of this paper is organized as follows. In Section 2, we review the Cox proportional

hazard model and then introduce the penalized partial likelihood with the `1 penalty. The

theoretical properties of the Lasso Cox estimator are studied in Section 3. In Section 4, we give

an outline of proof of theoretical guarantee of performance of the method. Most of proof and

technical details are relegated to the Appendices.

Notation: We collect here some standard notation used throughout the paper. For a vector

α, β ∈ Rp, we use the usual inner product of Rp, given by 〈α, β〉 = α′β, and ‖α‖2 =
√
〈α, α〉

is denoted to be its `2 norm. Similarly the `1-norm is given by ‖α‖1 =
∑p

j=1 |αj | with α =

(α1, ..., αp)
′. For some subset A ⊆ {1, ..., p}, we denote by ‖αA‖∞ = maxj∈A |αj |. For a vector

z ∈ Rp and a subset S ⊆ {1, ..., p}, we write zS ∈ RS to denote the vector z restricted to S.

Given sequence f(n) and g(n), the notion f(n) = Op(g(n)) means that there exists a constant
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c such that f(n) ≤ cg(n); Similarly, f(n) = op(g(n)) means that f(n)/g(n) goes to zero as

n → ∞, and sometimes we write it by f(n) � g(n). For a matrix M = (Mij), we define the

spectral norm, given by ‖M‖2 = max‖x‖2=1 ‖Mx‖2. Also we write ‖M‖∞ = maxj
∑

i |Mij |.

2 Problem formulation

In this section, we formulate the setting and the estimator, and state some key quantities used

for our analysis.

2.1 The sparse Cox’s proportional hazards model

We now briefly reviewing the Cox’s proportional hazards model. Following Andersen and Gill

(1982), consider an n-dimensional counting process N(n)(t) = (N1(t), N2(t), ..., Nn(t))′, t ≥ 0,

where Ni(t) is the number of observed events in the time interval [0, t] for the i-th individual.

The sample paths of N1(·), ..., Nn(·) are step functions, zero at t = 0, with jumps of size 1 only.

Furthermore, no two components jump at the same time. For t ≥ 0, let Ft be the σ-filtration

representing all the information available up to time t. Assume that for {Ft, t ≥ 0}, N(n)(·) has

predictable compensator Λ(n) = (Λ1,Λ2, ...,Λn)′ with

dΛi(t) = Yi(t) exp
(
Zi(t)

′βo
)
dΛ0(t), (2.1)

where Zi(t) = (Zi1(t), Zi2(t), ..., Zip(t))
′ is a p-dimensional vector-valued predictable covariate

process, and βo is the true regression coefficient associated with p-dimensional features. Λ0(·) is

an unknown baseline cumulative hazard function and, for each i, Yi(t) ∈ {0, 1} is a predictable

at risk indicator process, which can be constructed from data. In this setting, we can always use

the natural filtration of the processes, that is, Ft = σ{Ni(s), Yi(s),Zi(s); s ≤ t, i = 1, ..., n}. In

the case of Cox model, we assumes that the vector βo is sparse, in the sense that the cardinality

so = |S(βo)| satisfies so � p, where S(β) = {j : βj 6= 0} and β = (β1, · · · , βp)′.

2.2 Maximum partial likelihood estimator with the Lasso

This paper focuses on the maximum partial likelihood estimator with the `1 penalty. For this

purposes, define logarithm of the Cox partial likelihood for survival experience at time t,

C(β; t) =
n∑
i=1

∫ t

0
Zi(s)

′βdNi(s)−
∫ t

0
log
[ n∑
i=1

Yi(s)e
Zi(s)

′β
]
dN̄(s),

where N̄ =
∑n

i=1Ni. The Lasso programme for the Cox model is to minimize a `1-penalized

negative log-partial likelihood criterion, given by

L(β, λ) = `(β) + λ‖β‖1, (2.2)
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where `(β) = −C(β; τ)/n and λ is a penalty parameter. τ is a finite experiment time, the data

up to that are frequently used. Since the minimization problem for (2.2) is a convex programme,

a global estimator of the Lasso programme (2.2) always exists, denoted by β̂,

β̂ = β̂(λ) = arg min
β
{L(β, λ)} . (2.3)

2.3 Additional useful notation

To facilitate our theoretical analysis, we introduce the gradient vector and Hessian matrix of

the Cox model. The following notation on a vector/matrix is useful before giving several critical

quantities for our analysis. For a vector v, we write v⊗0 = 1 ∈ R, v⊗1 = v and v⊗2 = vv′. For

any vector β ∈ Rp, we define

S(k)(t,β) =
1

n

n∑
i=1

Zi(t)
⊗κYi(t)e

Zi(t)
′β, κ = 0, 1, 2. Z̄n(t,β) =

S(1)(t,β)

S(0)(t,β)
,

Vn(t,β) =
n∑
i=1

wni(t,β)(Zi(t)− Z̄n(t,β))⊗2 =
S(2)(t,β)

S(0)(t,β)
− Z̄n(t,β)⊗2,

where wni(t,β) = Yi(t) exp(Zi(t)
′β)
/

[nS(0)(t,β)]. Note that S(0) is a scalar, S(1) and Z̄ are

p−dimensional vectors, and S(2) and Vn are p × p matrices. It has been shown as in Andersen

et al. (1982) that the gradient of `(β) is represented as

˙̀(β) =
∂`(β)

∂β
= − 1

n

n∑
i=1

∫ τ

0

[
Zi(s)− Z̄n(s,β)

]
dNi(s), (2.4)

and the Hessian matrix of `(β) is

῭(β) =
∂2`(β)

∂β∂β′
=

1

n

n∑
i=1

∫ τ

0
Vn(s,β)dNi(s). (2.5)

Since S(k) and Vn depend on random sample, we need to define their population counterparts

for theoretical analysis. Define

s(k)(t,β) = E
[
Z(t)⊗κY (t)eZ(t)′β

]
, κ = 0, 1, 2,

e(t,β) = s(1)(t,β)/s(0)(t,β).

Then we can define the population counterparts of ῭(β) by

Σ(β) = E
[ ∫ τ

0

(s(2)(s,β)

s(0)(s,β)
− e(s,β)⊗2

)
dN(s)

]
.

The matrix Σ := Σ(βo) characterizes the covariance structure of the model (2.1) and will play

a critical role in our high dimensional analysis.
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In this paper, we are concerned with the problem of signed support recovery, defined explicitly

as follows. For any vector β ∈ Rp, we define its sign vector

sign(βj) :=


+1 βj > 0

−1 βj < 0

0 βj = 0.

Despite the empirical success of the Lasso estimators for various sparse models, relatively

little theory is available to explain why they work and which conditions are essential to guarantee

their empirical performance. One of contributions of this paper is to provide sufficient and

necessary conditions for the Lasso scheme (2.3), so that the signed support sign(β̂) = sign(βo)

is guaranteed with high probability.

3 Primal dual witness technique and statistical theory

In this section, we first construct a biased oracle estimator based on the primal-dual witness

proof technique (PDW). Then we give two useful lemmas to describe the solutions of the Lasso

programme (2.3). In Subsection 3.2, we introduce some technical conditions for building analysis

framework, and then establish estimation error of the biased oracle estimator. Based on these

results, we state the weak oracle property of the Lasso estimator in Subsection 3.3, and in

Subsection 3.4 we show that the mutual coherent condition and the minimum value of the true

nonzero coefficients are essential to guarantee the corrected sign recovery.

3.1 Primal dual witness construction

We now outline the main steps of the PDW, developed by Wainwright (2009), which we will use to

establish support recovery for the program (2.3). Define the active set S = S(β0) = {j : βoj 6= 0},
and its supplementary Sc = {j : βoj = 0}. Without loss of generality, we assume that the last

p − so components of βo are 0, i.e. βo = ((βo1)′,0′)′. A vector z ∈ Rp is a subgradient for the

`1-norm evaluated at β, written as z ∈ ∂‖β‖1, if the elements satisfy the following relation:

zj = sign(βj) if βj 6= 0, and zj ∈ [−1, 1], otherwise.

Recall that the key steps of the PDW argument consists of the following procedures:

Step 1: Acting as if the true sparsity structure is known in advance, the biased oracle

estimator is defined as β̌ = (β̌S ,0), where

β̌S = min
βS∈RS

{
`
(
(βS ,0)

)
+ λ‖βS‖1

}
. (3.1)
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Note that we here impose the additional constraint such that S(β̌) ⊆ S(βo) = S. The solution to

this restricted convex program (3.1) is guaranteed to be unique under the invertibility condition

on ῭
SS(βS ,0).

Step 2: We choose žS ∈ RS as an element of the subdifferential of the ‖ · ‖1 norm evaluated

at β̌S . By definition of subgradient, we see that ‖žS‖∞ ≤ 1.

Step 3: We solve for a vector žSc ∈ Rp−so to satisfy the zero subgradient condition

˙̀(β̌) + λž = 0, (3.2)

where ž = (žS , žSc). Then we check whether or not the dual feasibility condition |žj | ≤ 1 for all

j ∈ Sc is satisfied. (For ensuring uniquenss, we need to check strict dual feasibility of žS , that

is, maxj∈Sc |žj | < 1.)

Step 4: We check whether the sign consistency condition žS = sign(βo1) is satisfied.

Note that, in high dimensions, the Lasso programme (2.3) is not guaranteed to be strictly

convex, so there may be multiple solutions generated by (2.3). We next consider the properties

of the lasso estimators based on (2.3).

Lemma 1. (a) A vector β̂ ∈ Rp is optimal if and only if there exists a subgradient vector

ẑ ∈ ∂‖β̂‖1 such that

1

n

n∑
i=1

∫ τ

0

[
Zi(s)− Z̄n(s, β̂)

]
dNi(s)− λẑ = 0. (3.3)

(b) Suppose that the subgradient vector satisfies the strict dual feasibility condition |ẑj | < 1

for all j /∈ S(β̂), then any optimal solution β̃ to the Lasso programme (2.3) satisfies β̃j = 0 for

all j /∈ S(β̂).

(c) Under the conditions of part (b). If the |S(β̂)| × |S(β̂)| matrix ῭
S(β̂)S(β̂)(β) is invertible,

then β̂ is the unique optimal solution of the Lasso program.

The above lemma shows that the solution of (2.3) is unique to the support recovery , provided

that the strict dual feasibility condition in (3.3) holds and the restricted Hessian matrix over

RS(β̂) is invertible.

3.2 Estimation error of the oracle estimator β̌

In this subsection, we are ready to establish estimation error for the Lasso Cox estimator β̌. To

this end, we need the following assumptions to facilitate our theoretical analysis.

Assumption 1. (1) Suppose that {Yi(t),Zi(t), Ni(t), t ≥ 0}, i = 1, · · · , n are i.i.d. time-

dependent sample from the underlying process {Y (t),Z(t), N(t), t ≥ 0}. (2) P[maxi{Ni(τ)} ≤
1] = 1. (3) No two components of Ni’s jump at the same time.
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Assumption 2. (1) There exists some constant K such that

sup
0≤t≤τ

max
j≤p
|Zij(t)− Zi′j(t)| ≤ K, for all i < i′ ≤ n.

(2) Λ0(τ) <∞. (3) P{Y (τ) = 1} > 0. (4) The sample path of Zj(·), j = 1, ..., p, are of uniformly

bounded variation.

Assumption 3. Suppose that
∥∥ΣSS

∥∥
2

= Op(1) and
∥∥(ΣSS)−1

∥∥
2

= Op(1).

Assumption 1 and parts (2) and (3) of Assumption 2 are standard for survival models

(Andersen and Gill, 1982); part (1) of Assumption 2 controls the behavior of the covariates

and such condition for linear regression has been imposed on the deterministic Gram design.

Actually, our analysis still holds under a relaxed condition such as sub-Gaussian ensembles, but

this will complicate our proof; part (4) of Assumption 2 is a mild technique condition that will

control entropy integrals involved empirical process, which has been imposed in Lin et al. (2013).

Assumption 3 is also a standard condition for the Cox model, which holds obviously when so is

fixed. This condition has also been required by Bradic et al. (2011) under similar settings.

To estimate ‖β̌ − βo‖∞, we only need to consider the subvector in the first so component,

that is ‖β̌S − βo1‖∞, because β̌Sc = βoSc = 0. Hence, the consistency of the estimator β̌ can

be obtained from the consistent result of Theorem 3.1 (Huang et al., 2013) over the restricted

space RS .

Lemma 2 (Estimation Error). Consider the local estimator β̌S generated by the restricted Lasso

programme (3.1). Suppose that Assumptions 1-3 hold over RS, then, in the event
∥∥ ˙̀
(
βo
)
S

∥∥
∞ =

Op(λ), we have

‖β̌S − βo1‖2 = Op
(√
soλ
)
.

Moreover, let λ = Op
(√

log(p/δ)/n
)

with a small 0 < δ < 1, then with probability at least 1− δ,

‖β̌S − βo1‖2 = Op
(√

so log(p/δ)/n
)
.

The proof of Lemma 2 can be found in Appendix A. By Lemma 1(a), we can see that, in

order to prove β̌ is an optimum of the Lasso programme (2.3), we still need to show that ž is

one of subgradients of the `1-norm at β̌.

3.3 Weak oracle property

An estimator is said to have the weak oracle property if it is both estimation consistency and

model selection consistency, proposed originally by Lv et al. (2009). By the part (a) and (b) of

Lemma 1, to derive the weak oracle property of the Lasso estimator defined in (2.3), we shall

provide a sufficient condition to ensure that ẑ ∈ ∂‖β̂‖1 and maxj∈S(β̂)c |ẑj | < 1.

Assumption 4. There exists γ ∈ (0, 1] such that
∥∥ΣScS(ΣSS)−1

∥∥
∞ ≤ 1− γ.
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Assumption 4 is an analog of mutual incoherent conditions related to the covariance matrix

Σ, which have been considered in linear regression (Zhao and Yu, 2006) and in additive hazards

regression (Lin and Lv, 2013). It should be pointed out, the restriction on the correlation

structure in Assumption 4 is more complex, compared to linear or general additive models.

In fact, the matrix Σ depends on the failure process and censoring mechanism, as well as the

distribution of covariates. Although Assumption 4 is stringent in some sense, we will show in

Theorem 3 that such incoherent condition is necessary to guarantee support recovery of the

Cox model via the Lasso. As a consequence, the ability of conducting variable selection via the

Lasso programme is affected by the interplay of several factors, including the the distribution of

covariates, failure process and censoring mechanism.

We now state general theoretical results regarding the proposed estimator, which plays a

critical role in deriving oracle properties.

Theorem 1. Under Assumptions 1-3 as above.

(a) If Steps 1 through 3 of the PDW method succeed with strict dual feasibility in Step 3,

then the Lasso (2.3) has a unique solution given by β̌ with S(β̌) ⊆ S.

(b) If Steps 1 through 4 of the PDW method succeed with strict dual feasibility in Step 3.

When |β̌j | > 0 is satisfied for j ∈ S, β̌ is the unique solution of the Lasso (2.3), such that the

corrected signed support holds, i.e. sign(β̌) = sign(βo).

(c) Conversely, if either Step 3 or 4 of the PDW method fails, then the Lasso fails to recover

the corrected signed support.

It is seen from Theorem 1, the main task in the primal-dual witness construction lies in

verifying the dual feasibility condition in Step 3, and the sign consistency condition in Step 4.

Note also that part(b) of Theorem 1 hold only when |β̌j | > 0 (j ∈ S) is satisfied, which can

be verified as long as the lower bound of {|βoj |, j ∈ S} is not small sufficiently. This will be

shown clearly in Theorem 2 below.

Combining Theorem 1 and technical lemmas presented in Appendix, we can state the weak

oracle property of the proposed estimator.

Theorem 2. Under Assumptions 1-4 and E
[∥∥Z(t)⊗2

SS

∥∥
2

]
is bounded uniformly on t ∈ [0, τ ]. If

n � s3
o log(p), then with probability at least 1 − δ, the Lasso programme (2.3) has a unique

optimum given by β̌, such that

(a) (Sparity) β̌Sc = 0;

(b) (`∞-loss) ‖β̌S − βo1‖∞ = Op
(√

so log(p/δ)/n
)
.

If additionally, we have a lower bound of the form minj∈S |βoj | �
√
so log(p/δ)/n, then it is

guaranteed that β̌ is sign-consistent for βo.
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The proof of Theorem 2 is relegated to Section 4.1. Due to semi-parametric structure and

censoring mechanism, we require constraints n � s3
o log(p) to guarantee sparse recovery. This

sufficient condition on p, so and n implies that the Lasso Cox estimator can handle a nonpoly-

nomially growing dimension of covariates as high as p = op(exp(n/s3
o)), and the dimension of

the true sparse model growing as so = op(n
1/3). Theorem 2 guarantees that β̌ is the unique

sign-consistent estimator for βo, as long as minj∈S |βoj | �
√
so log(p)/n are satisfied.

3.4 Necessary conditions for sign recovery consistency

Now we turn to the results related to the failure of the sign recovery consistency, providing that

either mutual incoherence condition or the constraint on minimum value of the true coefficient

is violated.

Theorem 3. Suppose that Assumptions 1-3 hold.

(a) If mutual incoherence condition, that is Assumption 4, is violated, namely,

max
j∈Sc

∣∣e′jΣScS(ΣSS)−1sign(βo1)
∣∣ = 1 + ν, ν > 0, (3.4)

then for any λ > 0 and sufficiently large n, the probability in which sign support recovery fails

is no less than 1/2, that is,

P
[
sign(β̂) 6= sign(βo)

]
≥ 1/2.

(b) For each j ∈ S, we define the quantity

h(λ) := λe′j(ΣSS)−1sign(βo1).

If there exists j ∈ S, we have the inclusion βoj ∈ (0, h(λ)) or the inclusion βoj ∈ (h(λ), 0). Then

there also holds

P
[
sign(β̂) 6= sign(βo)

]
≥ 1/2.

Theorem 3(a) implies that, the mutual incoherence condition in Assumption 4 is essential

to ensure the corrected sign recovery for the Lasso partial likelihood estimator. The same

conclusion has been found in linear regression model with high dimensions (Wainwright, 2009)

and linear regression model with fixed dimension (Zhao and Yu, 2006). For sign consistency,

Theorem 3(b) indicates that the value minj∈S |βoj | cannot decay to zero faster than the penalty

parameter λ.

4 Proof for main theorems

A key step for the proof of Theorem 2 is to verify the strict dual feasibility condition In PDW

procedure. To this end, We first derive two sufficient conditions to guarantee the strict dual
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feasibility condition. Then, we shall prove that these two conditions are satisfied under our

Assumptions 1-4. To prove Theorem 3, we need an application of martingale central limit

theorem.

4.1 Proof of Theorem 2

In this section, we first derive conditions that allows us to establish the strict dual feasibility

conditions required so as to apply Theorem 1.

By the zero-sbugradient condition (3.2), we rewrite it as

˙̀(β̌)− ˙̀(βo) + ˙̀(βo) + λž = 0.

Let Q̂ :=
∫ 1

0
῭
(
βo + θ(β̌ − βo)

)
dθ, then one gets Q̂[β̌ − βo] + ˙̀(βo) + λž = 0. Since S(β̌) ⊆ S,

the above equality can be rewritten with a block form[
Q̂SS Q̂SSc

Q̂ScS Q̂ScSc

][
β̌S − βo1

0

]
+

[
˙̀(βo)S
˙̀(βo)Sc

]
+ λ

[
žS

žSc

]
= 0. (4.1)

By computing the top block of the equation (4.1), we have

β̌S − βo1 = −(Q̂SS)−1
[

˙̀(βo)S + λžS
]
. (4.2)

Furthermore, a simple algebraic manipulations for the bottom of (4.1) yields that

žSc =
1

λ

{
Q̂ScS(Q̂SS)−1

[
˙̀(βo)S + λžS

]
− ˙̀(βo)Sc

}
. (4.3)

Based on the equality (4.3), we have the following result:

Proposition 1. Under the PDW construction of (3.2), the strict dual feasibility holds, provided

that λ is chosen to satisfy the following inequalities

∥∥ ˙̀(βo)
∥∥
∞ ≤

γ

8 + 2γ
λ, (4.4)

and ∥∥Q̂ScS(Q̂SS)−1
∥∥
∞ ≤ 1− γ/2. (4.5)

Proof. Since ‖žS‖∞ ≤ 1 by definition, the equation (4.3) is applied to yield that

‖žSc‖∞ ≤ 1

λ

∥∥ ˙̀(βo)
∥∥
∞ +

1

λ

∥∥Q̂ScS(Q̂SS)−1 ˙̀(βo)S
∥∥
∞ +

∥∥Q̂ScS(Q̂SS)−1
∥∥
∞

≤ 1

λ

∥∥ ˙̀(βo)
∥∥
∞ +

∥∥Q̂ScS(Q̂SS)−1
∥∥
∞

(
1 +

1

λ

∥∥ ˙̀(βo)S
∥∥
∞

)
≤ 1− γ

4
,

11



provided that (4.4) and (4.5) hold simultaneously.

By Proposition 1, in order to verify the strict dual feasibility condition, we need to give an

appropriate bound for
∥∥ ˙̀(βo)

∥∥
∞ and provide sufficient conditions to guarantee that (4.5) holds.

To bound
∥∥ ˙̀(βo)

∥∥
∞, we introduce additional notation on martingales. Since Λ(n) is the

predictable compensator of N(n) and Ni(t) are independent processes,

Mi(t) = Ni(t)−
∫ t

0
Yi(s) exp

(
Zi(s)

′βo
)
dΛ0(s), 1 ≤ i ≤ n, t ≥ 0, (4.6)

are local martingales on [0, τ) with predictable variation/covariation processes

〈Mi,Mi〉(t) =

∫ t

0
Yi(s) exp

(
Zi(s)

′βo
)
dΛ0(s), and 〈Mi,Mj〉(t) = 0, i 6= j.

The following lemma is provided by Huang et al. (2013), and another similar lemma can be

found in (De. La. Pena, 1999).

Lemma 3. (i) Let fn(t) = 1
n

∫ t
0 ai(s)dMi(s) with [−1, 1]-valued predictable processes ai(s).

Then, for all c > 0,

P
{

max
t∈[0,τ ]

|fn(t)| > cx,

n∑
i=1

∫ τ

0
Yi(t)dNi(t) ≤ c2n

}
≤ 2 exp

(
− nx2

2

)
.

(ii) Suppose that supt≥0 maxi≤n,j≤p |Zij(t) − Z̄nj(t,βo)| ≤ K, where Z̄nj(t,β
o) are the compo-

nents of Z̄n(t,βo). Then, for all c > 0,

P
{∥∥ ˙̀(βo)

∥∥
∞ > cKx,

n∑
i=1

∫ τ

0
Yi(t)dNi(t) ≤ c2n

}
≤ 2p exp

(
− nx2

2

)
.

If additionally P{maxi≤nNi(τ) ≤ 1} = 1, we can take c = 1 and yields that

P
{∥∥ ˙̀(βo)

∥∥
∞ > Kx

}
≤ 2p exp

(
− nx2

2

)
.

It is shown in Lemma 3 above, with high probability we can take λ = c2

(√
log(p)/n

)
with

a suitable constant c2, so that the equation (4.4) is satisfied.

On the other hand, to verify (4.5) in Proposition 1 under Assumption 4, we need to measure

how close between Q̂ and Σ. To be precise, since Q̂ is an empirical counterpart of the matrix Σ

(note also depends on β̌), a key step to verify (4.5) is to show that
(
Q̂SS

)−1
and Q̂ScS are close

to
(
ΣSS

)−1
and ΣScS , respectively. These intermediate results are provided by the following

proposition.

Proposition 2. (Concentration of empirical matrices) Suppose that Assumptions 1-3 hold and

12



E
[∥∥Z(t)⊗2

SS

∥∥
2

]
is bounded uniformly. Then, if s3

o � n, with probability at least 1− δ, there holds

∥∥(Q̂SS)−1 −
(
ΣSS

)−1∥∥
2

= soOp

(√so
n

+

√
log(4s2

o/δ)

n

)
. (4.7)

If additionally Assumption 4 also holds, and n � s3
o log(p). Then, with the same probability as

above, there holds ∥∥Q̂ScS(Q̂SS)−1
∥∥
∞ ≤ 1− γ/2.

Thus, under Assumptions 1-4, the equation (4.5) is verified by Proposition 2. Until now,

two conditions involved in Proposition 1 are both verified, so the strict dual feasibility of Step

3 in PDW procedure holds. Then by part(a) of Theorem 1, we conclude that β̌ is the unique

solution of the Lasso programme (2.3) with S(β̌) ⊆ S. Next we shall obtain the inequality

in Theorem 2 based on the formula in (4.2). In fact, by (4.7) we can treat
(
Q̂SS

)−1
as some

constant. Meanwhile, recall that λ = c2

(√
log(p/δ)/n

)
is taken as before, the desired inequality

in Theorem 2 follows from (4.2) immediately.

In addition, if minj∈S |βoj | �
√
so log(p/δ)/n, without loss of generality, we assume that

βoj > 0. In this case, by part(b) of Theorem 2, we have that β̌j ≥ βoj −Op
(√

so log(p/δ)/n
)
> 0

for any j ∈ S. The similar argument also holds for βoj < 0. As a result, we conclude that

sign(β̌S) = sign(βo1). Since we have proved that |β̌j | > 0 for all j ∈ S, this follows that

žS = sign(β̌S) = sign(βo1) by the definition of subgradient. So Step 4 in PDW is verified.

Totally, all the conditions of part(b) in Theorem 1 are satisfied, and based on this we obtain the

second part of Theorem 2. �

4.2 Proof of Theorem 3

By part (c) of Theorem 1, it suffices to show that the dual feasibility check in Step 3, or the

sign consistency check in Step 4 of the PDW must fail with probability at least 1/2. It may be

assumed that žS = sign(βo1), otherwise, the sign consistency condition fails. Then, it remains to

show that under this condition, the dual feasibility condition in Step 3 fails with probability at

least 1/2. From (4.3), we recall that

žSc =
1

λ

{
Q̂ScS(Q̂SS)−1

[
˙̀(βo)S + λsign(βo1)

]
− ˙̀(βo)Sc

}
. (4.8)

Let j ∈ Sc be the index corresponding to the maximum which is achieved in the violating

condition (3.4). On one hand, among the proof of Proposition 2, we have show that Q̂ScS(Q̂SS)−1

converges to ΣScS(ΣSS)−1 in ‖ · ‖∞-norm. Then, the violation condition (3.4) implies that

∣∣e′jQ̂ScS(Q̂SS)−1sign(βo1)
∣∣ ≥ 1 + ν/2

13



with high probability tending to one. Without loss of generality, we may assume that

e′jQ̂ScS(Q̂SS)−1sign(βo1) ≥ 1 + ν/2. By (4.8), we have

žj = e′jQ̂ScS(Q̂SS)−1sign(βo1)− 1

λ
e′j
{

˙̀(βo)Sc − Q̂ScS(Q̂SS)−1 ˙̀(βo)S
}
.

Hence, to prove žj > 1, it suffices to show that P[Wj ≤ ν
4 ] ≥ 1/2, where

Wj :=
1

λ

{
˙̀(βo)j − e′jQ̂ScS(Q̂SS)−1 ˙̀(βo)S

}
.

For this purpose, from the proof of Theorem 3.2 (Andersen and Gill, 1982), an application of the

martingale central limit theorem yields that ˙̀(βo)j and ˙̀(βo)S are both asymptotically standard

normal with zero mean. Note that

e′jQ̂ScS(Q̂SS)−1 ˙̀(βo)S = e′j
[
Q̂ScS(Q̂SS)−1 −ΣScS(ΣSS)−1

]
˙̀(βo)S + e′j

(
ΣScS(ΣSS)−1

)
˙̀(βo)S .

It follows from the proof of Proposition 2 that ‖Q̂ScS(Q̂SS)−1−ΣScS(ΣSS)−1‖∞ = op(1). Then

the first term in the above equality converges to zero in probability, and this in turn means that

e′jQ̂ScS(Q̂SS)−1 ˙̀(βo)S is also an asymptotically standard normal with zero mean. Totally, Wj

is also an asymptotically standard normal with zero mean, so P
[
Wj ≤ ν

4

]
> P

[
Wj ≤ 0

]
= 1/2

as n goes to infinity. Thus we complete the proof of part (a) in Theorem 3.

To prove part (b) of Theorem 3, we first recall from (4.2) that

β̌S − βo1 = −(Q̂SS)−1
[

˙̀(βo)S + λžS
]
.

To recover the correct signed support, we must have žS = sign(βo1). Besides, by Proposition 2,

we have shown that
∥∥(Q̂SS)−1 −

(
ΣSS

)−1∥∥
∞ = op(1). Thus, for j ∈ S specified in part (b) of

Theorem 3, β̌j can be expressed by

β̌j = e′j
[(

ΣSS

)−1 −
(
Q̂SS

)−1][ ˙̀(βo)S + λsign(βo1)
]

+ βoj − e′j
(
ΣSS

)−1[ ˙̀(βo)S + λsign(βo1)
]

= op(1) +
{
βoj − h(λ)

}
− e′j

(
ΣSS

)−1 ˙̀(βo)S .

Without loss of generality, we only consider the situation βoj ∈
(
0, h(λ)

)
. As mentioned above,

e′j
(
ΣSS

)−1 ˙̀(βo)S is an asymptotically standard normal with zero mean, which yields that

P[β̌j < 0] > P[e′j
(
ΣSS

)−1 ˙̀(βo)S ≥ 0] = 1/2, n→∞,

where we used the fact that βoj − h(λ) < 0. As a result, Step 4 of the PDW fails, that is, žS 6=
sign(βo1). This together with part (c) of Theorem 1 concludes the proof. �

Appendix A: Useful Lemmas in Empirical Processes
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In this paper, a main ingredient from the theoretical point of view is that the randomness of

the problem should be taken care of. For example, the covariate Zi(t) is a random function of

t, and classical random matrix theory are invalid to our time-dependent data. In this situation,

we need to consider the behavior of the empirical process. This paper adopts the notation

of Rademacher complexity to characterize the functional capacity. Let us recall Rademacher

random variables, which are independent {−1, 1}-valued random variables with probability 1/2

of taking either value. Let X1, ..., Xn be i.i.d. random sample from the distribution ρ and σ1,

..., σn be i.i.d. Rademacher random variables, we define the empirical Rademacher average on

the function space G as

R̂n(g) =
1

n

n∑
i=1

σig(Xi), g ∈ G,

and the population Rademacher average Rn(G) is given by

Rn(G) = sup
g∈G

Eσ,ρ[R̂n(g)],

where Eσ,ρ means taking expectation with respect to all the random variables (i.e. the data and

the Rademacher variables). Now we give some basic properties of Rademacher average.

Property. (1) Given any function class G and constants a, b ∈ R, denote the function class

{h|h(x) = ag(x) + b} by aG + b. Then

Rn(aG + b) = |a|Rn(G). (4.9)

(2) Another useful property of Rademacher average is that it can be bounded by the so-called

Dudley’s entropy integral, namely, there exists some constant c0 such that

Rn(G) ≤ c0√
n

∫ ‖G‖∞
0

√
logN(G, ε, dn)dε, (4.10)

where N(G, ε, dn) is the empirical covering number of G with the radius ε. Here the metric is

defined as (dn(f, g))2 = 1
n

∑n
i=1 |f(xi)− g(xi)|2 associated with available sample points {xi}ni=1.

In the literature of empirical process that, using this Rademacher average can remove the un-

necessary log n factor of the VC bound, as well as refined constants.

Let Pn(g) = 1
n

∑n
i=1 g(Xi) and P (g) = Eρ[g(X)]. We now state the fundamental result

involving Rademacher averages from Ledoux et al. (2011).

Lemma 4. If G ⊆ {g : X → [c, c + 1]} for any given constant c. For any 0 < δ < 1, with

probability at least 1− δ,

sup
g∈G
|P (g)− Pn(g)| ≤ 2Rn(G) +

√
log(2/δ)

2n
.

Note that by (4.9), we can extend the result of Lemma 4 to general case with any bounded
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function space.

A major challenge in our proof is to characterize the concentration of the large matrix/ vector

S(κ)(t,βo) = 1
n

∑n
i=1 Zi(t)

⊗κYi(t)e
Zi(t)

′βo
, κ = 0, 1, 2. Note that each entry of the stochastic

matrices is not a sum of independent terms, since it may vary with the time t. Hence the

functional complexity in the law of large number has to be considered. To this end, we rely

on Lemma 4 concerning the Rademacher complexity for empirical processes as our primary

mathematical tools.

Lemma 5. Under Assumption 2, for all l, k = 1, ..., p, there exists some universal constant

c0 > 0, such that for any 0 < δ < 1, with probability at least 1− δ,

sup
t∈[0,τ ]

∣∣S(0)(t,βo)− s(0)(t,βo)
∣∣ ≤ c0soe

K‖βo
1‖1

√
log(2/δ)

n
, (4.11)

sup
t∈[0,τ ]

∣∣S(1)
l (t,βo)− s(1)

l (t,βo)
∣∣ ≤ c0soe

K‖βo
1‖1

√
log(2/δ)

n
, (4.12)

sup
t∈[0,τ ]

∣∣S(2)
lk (t,βo)− s(2)

lk (t,βo)
∣∣ ≤ c0soe

K‖βo
1‖1

√
log(2/δ)

n
, (4.13)

where S
(1)
l (·) is the j-th element of S(1)(·) and S

(2)
lk (·) is the (l, k)-th entry of S(2)(·), and the

similar manner is valid to s
(2)
l (·) and s

(2)
lk (·).

Proof. We only prove (4.13), and the other two inequalities follow similarly. For any given l, k,

we write g(Xi) = wi(t)Zil(t)Zik(t), where wi(t) = Yi(t)e
Zi(t)

′βo
, t ∈ [0, τ ]. That is, S

(2)
lk (t,βo) =

Pn(g) and E[S
(2)
lk (t,βo)] = s

(2)
lk (t,βo) = P (g). Since maxi,l |Zil(t)| ≤ K for all t ∈ [0, τ ], it follows

that wi(t) ≤ eK‖β
o
1‖1 . Let g̃(Xi) = g(Xi)/(2K

2eK‖β
o
1‖1), then g̃(Xi) ∈ [−1/2, 1/2]. Based on

Lemma 4 with c = −1/2, the following inequality holds with probability at least 1− δ

|P (g̃)− Pn(g̃)| ≤ 2Rn(G) +

√
log(2/δ)

2n
, ∀ g̃ ∈ G, (4.14)

where G = {w(t)Zl(t)Zk(t)/(2K
2eK‖β

o
1‖1), t ∈ [0, τ ]} as the hypotheses set. By (4.10), it suf-

fices to show that the class of functions G has bounded uniform entropy integral. Since a

function of bounded variation can be expressed as the difference of two increasing functions,

it follows from Lemma 9.10 of Kosorok (2008) that Zl = {Zl(t)/K : t ∈ [0, τ ]} is a VC-

hull class associated with a VC class of index 2. Then, by Corollary 2.6.12 of Van der Vaart

et al. (1996), the entropy of Zl satisfies logN(Zl, ε, dn) = Op(1/ε). Also, by Example 19.16

of Van der Vaart (1998), Y = Y (t) : t ∈ [0, τ ] is a VC class and hence has bounded uniform

entropy integral. Thus, by Theorem 9.15 of Kosorok (2008), YZlZk has bounded uniform en-

tropy integral. It remains to consider the set H =
{

exp
(
Z(t)′βo − K‖βo1‖1

)
, t ∈ [0, τ ]

}
. For

any two functions f(tm) = exp
(
Z(tm)′βo − K‖βo1‖1

)
, tm ∈ [0, τ ](m = 1, 2). It is easy to

check that |f(t1)− f(t2)| ≤ ‖βo1‖∞
∑

j∈S
∣∣Zj(t1)−Zj(t2)

∣∣, and it follows that logN(H, ε, dn) ≤
so maxl∈S

{
logN(Zl, ε/(‖βo1‖∞so), dn)

}
= s2

oOp(1/ε). Then, applying Theorem 9.15 of Kosorok
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(2008) again, we conclude that the uniform entropy integral of YZlZkH is bounded by the order

of so. Consequently, our desired result follows immediately from (4.14) and (4.10).

Appendix B: Proof For Lemma 1 And Theorem 1

Proof of Lemma 1.

Equivalently, the convex program (2.3) can be reformulated as the `1-constrained minimiza-

tion, i.e. minβ∈Rp `(β), subject to ‖β‖1 ≤ C, where the penalty parameter λ and constraint

level C are in one-to-one correspondence via Lagrangian duality. So by Weierstrass’s theorem,

the minimum is always achieved. Furthermore, by a standard condition for optimality in a

convex program on the open set Rp, a point β̂ ∈ Rp minimizing (2.3) if and only if there exists

a subgradient ẑ ∈ ∂‖β̂‖1 such that ˙̀(β̂) + λẑ = 0. Thus part (a) is derived from (2.4).

To prove part (b), by standard duality theory (Bertsekas, 1995), given the subgradient

ẑ ∈ ∂‖β̂‖1, any optimal solution β̃ to the group Lasso must satisfy the complementary slackness

condition ẑτ β̃ = ‖β̃‖1. Since |ẑk| ≤ 1 for all k, |ẑj | < 1 (for some j) implies β̃j = 0. This

establishes Lemma 1 (b).

Finally, since the invertibility of ῭
S(β̂)S(β̂)(β) implies that ῭

S(β̂)S(β̂)(β) is strictly positive

definite, then when restricted to vectors of the form (βS(β̂),0), the group-Lasso program (2.3)

is strictly convex, and so its optimum is uniquely determined, which ultimately yields part (c).

�

Lemma 6. (a) If Assumption 1(3) holds and λ ≥ log(n)
n is satisfied, all the optimum of the

restricted programme (3.1) stay within a bounded domain of RS.

(b) Under Assumptions 1−3. For any bounded vector bS ∈ RS, ῭
SS(βo+(bS ,0)) is invertible.

The part(a) of Lemma 6 tells us that, it is enough to consider all the possible solutions

of (3.1) within a bounded domain, not the whole space RS . Furthermore, under additional

conditions, part (b) of Lemma 6 implies that the solution of (3.1) is unique. This serves the

proof of part (a) of Theorem 1 below.

Proof of Lemma 6. To prove part (a) of Lemma 6, by definition of β̌S , we have that

`
(
(β̌S ,0)

)
+ λ‖β̌S‖1 ≤ `

(
0)
)

=
1

n

∫ τ

0
log
( n∑
i=1

Yi(s)
)
dN̄(s), (4.15)

where N̄(s) =
∑n

i=1Ni(s). Since no two counting processes Ni jump at the same time, we have

|dN̄(s)| =
∣∣∑n

i=1 dNi(s)
∣∣ ≤ 1, where dNi(s) = Ni(t)−Ni(t

−) denotes the jump of Ni(·) at time

t. By (4.15), it follows that ‖β̌S‖1 ≤
τ log(n)
nλ <∞, provided that λ ≥ log(n)

n . On the other hand,

under Assumption 2 and P[maxi{Ni(τ)} ≤ 1] = 1, by Lemma 7 below, we have that

∥∥ΣSS − ῭(βo)SS
∥∥

2
= op(1),
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provided that s4
o � n. Then, repeating the process as that from (4.34) to (4.35), this together

with Assumption 3 implies that ῭(βo)SS is invertible with
∥∥(῭(βo)SS)−1∥∥

2
= Op(1). Since

῭(βo)SS is symmetric, we see that ῭(βo)SS is strictly positive definite. Besides, over the restricted

set RS , from Lemma 3.2 of Huang et al. (2013), we see that

῭(βo + (bS ,0))SS − e−2ηb ῭(βo)SS is nonnegative-definite,

where ηb = maxt maxij |b′SZiS(t)−b′SZjS(t)|. Since bS and ZS are both bounded by assumption,

e−2ηb > 0 holds. This further implies that ῭(βo + (bS ,0))SS is also strictly positive definite.

Note that ῭(βo + (bS ,0))SS = ῭
∣∣
S

(βo1 + bS), and then part (b) of Lemma 6 is proved. �

Proof of Theorem 1

Proof. Since β̌S is an interior point over RS , it must be a zero-gradient point for the restricted

program (3.1), hence ( ˙̀)
∣∣
S

((β̌S ,0)) + λžS = 0. By the chain rule, this implies that
(

˙̀(β̌)
)
S

+

λžS = 0, where β̌ = (β̌S , 0Sc). Besides, since maxj∈Sc |žj | ≤ 1 by assumption, we treat ž as one

extended subgradient of β̌. Then, β̌ is an optimal point of the group-Lasso scheme (2.3) based

on part (a) of Lemma 1. Furthermore, since S(β̌) ⊆ S be definition, the part(b) of Lemma

6 implies that ῭
S(β̌)S(β̌)(β) is also invertible. Thus, by the parts (b) and (c) of Lemma 1, we

conclude that β̌ is the unique solution of (2.3) satisfying S(β̌) ⊆ S.

If additionally, the sign consistency condition in Step 4 is satisfied. Then since žS was

chosen as an element of the subdifferential ∂‖β̌S‖1 in Step 2, we must have sign(β̌S) = sign(βo1),

provided that β̌j 6= 0 for all j ∈ S. Then this implies Lemma 1(b) by noting that S(β̌) = S(βo).

To prove part (c), it suffices to prove the following equivalent assertion: if there exists

a group-Lasso solution β̂ with S(β̂) = S and sign(β̂S) = sign(βo1), then the PDW method

succeeds in producing a dual feasible vector ž with žS = sign(βo1). First, by (2.4), it is easy

to verify that ˙̀(β̂)S = ( ˙̀)
∣∣
S

(β̂S). So β̂S is an optimal point to the restricted program (3.1).

Also note that ῭
SS((βS ,0)) is invertible as proved in part (b) of Lemma 6, the vector β̂S must

be the unique solution to (3.1). Note that sign(β̂S) = sign(βo1) by condition, and we conclude

that žS = sign(β̂S) is only subgradient that can be chosen in Step 2. Since β̂ = (β̂S ,0) is an

optimal Lasso solution by assumption, then there must exist a dual feasible vector žSc such that

(sign(β̂S), žSc) satisfies the zero subgradient condition (3.2).

Appendix C: Proof for Concentration of Hessian Matrix

Lemma 7. Under Assumption 2 and Assumption 1(2), the following inequality holds with prob-

ability at least 1− δ, ∥∥ΣSS − ῭(βo)SS
∥∥

2
= Op

(
s3/2
o

√
log(s2

o/δ)

n

)
. (4.16)

18



Proof. Let Llk and Σlk be the (l, k)-th entries of the matrices ῭(βo) and Σ, respectively. First

of all, we write

Llk −Σlk =
1

n

n∑
i=1

∫ τ

0

[S(2)
lk (t,βo)

S(0)(t,βo)

]
dNi(t)− E

∫ τ

0

[s(2)
lk (t,βo)

s(0)(t,βo)

]
dN(t)

− 1

n

n∑
i=1

∫ τ

0

[S(1)
l (t,βo)S

(1)
k (t,βo)

(S(0)(t,βo))2

]
dNi(t) + E

∫ τ

0

[s(1)
l (t,βo)s

(1)
k (t,βo)

(s(0)(t,βo))2

]
dN(t)

= T1 − T2.

To bound term T1, note that

S
(2)
lk (t,βo)

S(0)(t,βo)
−
s

(2)
lk (t,βo)

s(0)(t,βo)
=
S

(2)
lk (t,βo)− s(2)

lk (t,βo)

S(0)(t,βo)
−
s

(2)
lk (t,βo)

[
S(0)(t,βo)− s(0)(t,βo)

]
S(0)(t,βo)s(0)(t,βo)

.(4.17)

Since s(0)(t,βo)/eK‖β
o
1‖1 is bounded away from zero by Assumption 2(3), S(0)(t,βo)/eK‖β

o
1‖1 is

also bounded away from zero by (4.11). Then, from (4.11) and (4.13) in Lemma 5, we have

sup
t

∣∣∣S(2)
lk (t,βo)

S(0)(t,βo)
−
s

(2)
lk (t,βo)

s(0)(t,βo)

∣∣∣ ≤ c0so

√
log(4/δ)

n
(4.18)

with probability at least 1− δ/2. Write

T1 =
1

n

n∑
i=1

∫ τ

0

[S(2)
lk (t,βo)

S(0)(t,βo)
−
s

(2)
lk (t,βo)

s(0)(t,βo)

]
dNi(t) + (Pn − P )

∫ τ

0

[s(2)
lk (t,βo)

s(0)(t,βo)

]
dN(t)

= T11 + T12, (4.19)

Since P (maxi{Ni(τ)} ≤ 1) = 1, it follows from (4.18) that |T11| = Op

(
so

√
log(2/δ)

n

)
. Besides,

note that the term T22 is an i.i.d. and bounded sum, an application of Hoeffding inequality

yields that, with probability at least 1− δ/2

|T12| = Op

(√ log(4/δ)

n

)
.

Putting the bounds for T11 and T12 together, with probability at least 1− δ, there holds

|T1| = Op

(
so

√
log(2/δ)

n

)
.

Similarly, we can rewrite T2 as

T2 =
1

n

n∑
i=1

∫ τ

0

[S(1)
l (t,βo)S

(1)
k (t,βo)

(S(0)(t,βo))2
−
s

(1)
i (t,βo)s

(1)
j (t,βo)

(s(0)(t,βo))2

]
dNi(t)

+(Pn − P )

∫ τ

0

[s(1)
l (t,βo)s

(1)
k (t,βo)

(s(0)(t,βo))2

]
dN(t)

= T21 + T22.
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To bound term T21, note that

S
(1)
l (t,βo)S

(1)
k (t,βo)

(S(0)(t,βo))2
−
s

(1)
l (t,βo)s

(1)
k (t,βo)

(s(0)(t,βo))2
=

S
(1)
k (t,βo)

(S(0)(t,βo))2

{
S

(1)
l (t,βo)− s(1)

l (t,βo)
}

+
s

(1)
l (t,βo)

(S(0)(t,βo))2

{
S

(1)
k (t,βo)− s(1)

k (t,βo)
}
−

s
(1)
l (t,βo)s

(1)
k (t,βo)

(S(0)(t,βo)s(0)(t,βo))2

{
[S(0)(t,βo)]2 − [s(0)(t,βo)]2

}
.

By the same arguments as in the proof of (4.17), it follows that

∣∣∣S(1)
l (t,βo)S

(1)
k (t,βo)

(S(0)(t,βo))2
−
s

(1)
l (t,βo)s

(1)
k (t,βo)

(s(0)(t,βo))2

∣∣∣ ≤ c0so

√
log(4/δ)

n

with probability at least 1− δ/2. This further implies that |T21| = Op

(
so

√
log(4/δ)

n

)
. Also, note

that the term T22 is an i.i.d. and bounded sum, an application of Hoeffding inequality yields

that, with probability at least 1− δ/2, |T22| = Op

(√
log(4/δ)

n

)
. Then, combining the bounds for

T21 and T22 yields that

T2 = Op

(
so

√
log(4/δ)

n

)
.

Finally, putting the bounds for T1 and T2 together tells us that, with probability at least 1− δ

∥∥ΣSS − ῭(βo)SS
∥∥

max
= Op

(
so

√
log(s2

o/δ)

n

)
, (4.20)

where ‖ · ‖max is denoted to be the elementwise norm for a matrix. Note that ‖M‖2 ≤
√
so maxi,j |Mij | for any M ∈ Rso×so , the desired inequality follows from (4.20) immediately.

We here introduce the following useful lemma on matrices (Loh and Wainwright, 2014).

Lemma 8. Let A, B ∈ Rp be invertible. For any matrix norm || · ||, there holds

||A−1 −B−1|| ≤ ||A−1||2 · ||A−B||
1− |||A−1|| · |||A−B||

.

Proof of Proposition 2. First of all, by the triangle inequality, we have that

∥∥Q̂SS −ΣSS

∥∥
2
≤
∥∥Q̂SS − ῭(βo)SS

∥∥
2

+
∥∥ΣSS − ῭(βo)SS

∥∥
2
. (4.21)

Since the second term of (4.21) has been shown in Lemma 7, it suffices to bound the first one

of (4.21). Recalling ῭(β) = 1
n

∫ τ
0 Vn(s,β)dN̄(s), we have that

Q̂− ῭(βo) =

∫ 1

0

{
῭
(
βo + θ(β̌ − βo)

)
− ῭(βo)

}
dθ

=
1

n

∫ 1

0

∫ τ

0

{
Vn(s,βo + θ(β̌ − βo))− Vn(s,βo)

}
dN̄(s)dθ. (4.22)
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Then, for any unit vectors a,b ∈ Rp,

a′Vn(t,β)b =
n∑
i=1

win(t,β)a′
(
Zi(t)− Z̄n(t,β)

)
· b′
(
Zi(t)− Z̄n(t,β)

)
, β ∈ Rp.

Following the above formulation, for any δ ∈ Rp, we have that

a′
(
Vn(t,βo + δ)− Vn(t,βo)

)
b = I1 − I2 − I3 + I4, (4.23)

where

I1 :=

n∑
i=1

[
win(t,βo + δ)− win(t,βo)

]
a′Zi(t)b

′Zi(t),

I2 :=

n∑
i=1

win(t,βo + δ)a′Zi(t)b
′Z̄n(t,βo + δ)−

n∑
i=1

win(t,βo)a′Zi(t)b
′Z̄n(t,βo),

I3 :=

n∑
i=1

win(t,βo + δ)b′Zi(t)a
′Z̄n(t,βo + δ)−

n∑
i=1

win(t,βo)b′Zi(t)a
′Z̄n(t,βo),

I4 :=

n∑
i=1

win(t,βo + δ)a′Z̄n(t,βo + δ)b′Z̄n(t,βo + δ)−
n∑
i=1

win(t,βo)a′Z̄n(t,βo)b′Z̄n(t,βo).

Now we consider I1. To simplify expression, let δi = δi(t) = exp
{
Zi(t)

′δ
}

and wi = wi(t) =

Yi(t) exp
{
Zi(t)

′βo − K‖βo1‖1
}

. Since Zi(t) is uniformly bounded by K, maxi,t{(Zi(t))′βo} ≤
K‖βo1‖1, which guarantees that 0 < wi ≤ 1 for all i, t. In this case, I1 can be rewritten as

I1 =
n∑
i=1

[wi∑k 6=iwk(δi − δk)∑
k,l=1wkδkwl

]
a′Zi(t)b

′Zi(t).

Similarly, I2 − I4 can be rewritten as the following formulas,

I2 =
n∑
i=1

[wi∑k 6=iwk(δi − δk)∑
k,l=1wkδkwl

]
a′Zi(t)b

′Z̄n(t,βo) +

(∑n
i=1wia

′Zi(t)∑n
k=1wk

)
·
(∑n

i=1wiδib
′Zi(t)∑n

k=1wkδk
−
∑n

i=1wib
′Zi(t)∑n

k=1wk

)
,

I3 =

n∑
i=1

[wi∑k 6=iwk(δi − δk)∑
k,l=1wkδkwl

]
b′Zi(t)a

′Z̄n(t,βo) +

(∑n
i=1wib

′Zi(t)∑n
k=1wk

)
·
(∑n

i=1wiδia
′Zi(t)∑n

k=1wkδk
−
∑n

i=1wia
′Zi(t)∑n

k=1wk

)
,

I4 =

(∑n
i=1wiδia

′Zi(t)
)(∑n

i=1wiδib
′Zi(t)

)
(∑n

k=1wkδk
)2 −

(∑n
i=1wia

′Zi(t)
)(∑n

i=1wib
′Zi(t)

)
(∑n

k=1wk
)2 .
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Denote γδ = γδ(t) = maxi,j [Zi(t)− Zj(t)]
′δ > 0, and a direct computation yields that

|I1| ≤ exp(γδ)γδ

n∑
i=1

(
wi
∣∣a′Zi(t)⊗2b

∣∣)/ n∑
i=1

wi. (4.24)

Following Assumption 2(1), we have that γδ ≤ K‖δ‖1. Thus, it remains for bounding I1 to

estimate
∑n

i=1

(
wi
∣∣a′Zi(t)⊗2b

∣∣)/∑
i=1wi, which can be solved by estimating its numerator

and denominator respectively.

Note that, taking a supermum over unit vectors a, b ∈ RS , by definition we have

sup
‖a‖2=1,‖b‖2=1

{ 1

n

n∑
i=1

wi
∣∣a′Zi(t)⊗2b

∣∣} =
∥∥ 1

n

n∑
i=1

wi
(
Zi(t)

⊗2
)
SS

∥∥
2
,

which (4.24) further implies that

Ĩ1(t) := sup
‖a‖2=1,‖b‖2=1

{I1} ≤ K exp(K‖δ‖1)‖δ‖1 ·
∥∥ 1

n

n∑
i=1

wi
(
Zi(t)

⊗2
)
SS

∥∥
2

/ 1

n

n∑
i=1

wi. (4.25)

Note that by the triangle inequality, one gets

∥∥ 1

n

n∑
i=1

wi
(
Zi(t)

⊗2
)
SS

∥∥
2
≤
∥∥ 1

n

n∑
i=1

wi
(
Zi(t)

⊗2
)
SS
− E[w

(
Z(t)⊗2

)
SS

]
∥∥

2
+
∥∥E[w

(
Z(t)⊗2

)
SS

]
∥∥

2
.

and by definition we have

∥∥ 1

n

n∑
i=1

wi
(
Zi(t)

⊗2
)
SS
− E[w

(
Z(t)⊗2

)
SS

]
∥∥

2
≤
√
so
∥∥ 1

n

n∑
i=1

wi
(
Zi(t)

⊗2
)
SS
− E[w

(
Z(t)⊗2

)
SS

]
∥∥

max
,(4.26)

where ‖ · ‖max is defined as that in Lemma 7. Moreover, by the same arguments as that for the

proof of Lemma 5, with probability at least 1− δ, the following two inequities both hold

∣∣∣ 1
n

n∑
i=1

wi − E(w)
∣∣∣ = Op

(√ log(4/δ)

n

)
, (4.27)

∥∥ 1

n

n∑
i=1

wi
(
Zi(t)

⊗2
)
SS
− E[w

(
Z(t)⊗2

)
SS

]
∥∥

2
= Op

(
s1/2
o

√
log(s2

o/δ)

n

)
(4.28)

for all t ∈ [0, τ ]. Thus, since E(w) > 0 by Assumption 2(3), from (4.27) we see that 1
n

∣∣∑n
i=1wi

∣∣
is bounded away from zero with high probability. Thus, plugging (4.27) and (4.28) into (4.25),

we obtain that

sup
t
{Ĩ1(t)} = Op

(
exp(K‖δ‖1)‖δ‖1

)
, (4.29)

since E
[∥∥[Z(t)⊗2

SS

∥∥
2

]
is bounded uniformly by assumption. Besides, a similar argument shows
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that

Ĩ2(t) := sup
‖a‖2=1,‖b‖2=1

I2(t) = Op

(
exp(K‖δ‖1)‖δ‖1

)
, for all t ∈ [0, τ ],

Ĩ3(t) := sup
‖a‖2=1,‖b‖2=1

I3(t) = Op

(
exp(K‖δ‖1)‖δ‖1

)
, for all t ∈ [0, τ ],

Ĩ4(t) := sup
‖a‖2=1,‖b‖2=1

I4(t) = Op

(
exp(K‖δ‖1)‖δ‖1

)
, for all t ∈ [0, τ ].

Then, setting δ = θ(β̌ − βo), and combining with (4.22), (4.37) and all the derived bounds of

Ĩ1 − Ĩ4, we have that∥∥∥[Vn(s,βo + θ(β̌ − βo))− Vn(s,βo)
]
SS

∥∥∥
2

= Op

(
exp(K‖β̌ − βo‖1)‖β̌ − βo‖1

)
, (4.30)

for all s ∈ [0, τ ] and θ ∈ [0, 1]. Also, taking a supermum over unit vectors a, b ∈ RS , we see

from (4.22) that

∥∥Q̂SS − ῭(βo)SS
∥∥

2
≤ 1

n

∫ 1

0

∫ τ

0

∥∥∥[Vn(s,βo + θ(β̌ − βo))− Vn(s,βo)
]
SS

∥∥∥
2
dN̄(s)dθ. (4.31)

Since Ni(τ) ≤ 1 for all i ≤ n, it follows from (4.31), (4.30) and the result of Lemma 2 that

∥∥Q̂SS − ῭(βo)SS
∥∥

2
= soOp

(√ log(p/δ)

n

)
, (4.32)

which converges to zero as n goes to infinity and s2
o � n.

On the other hand, by Lemma 7 we recall that

∥∥ΣSS − ῭(βo)SS
∥∥

2
= Op

(
s3/2
o

√
log(s2

o/δ)

n

)
, (4.33)

with probability at least 1−δ/2. Therefore, combining (4.32), (4.33) with (4.21), we obtain that

∥∥Q̂SS −ΣSS

∥∥
2

= Op

(
s3/2
o

√
log(s2

o/δ)

n

)
. (4.34)

Since
∥∥(ΣSS)−1

∥∥
2

= Op(1) by Assumption 3, we still need to show that
∥∥(Q̂SS)−1

∥∥
2

= Op(1)

with high probability, so that applying Lemma 8 with the ‖ · ‖2-norm yields our desired result.

To this end, we decompose (Q̂SS)−1 as

(Q̂SS)−1 = (ΣSS)−1/2
{
I + (ΣSS)−1/2

(
Q̂SS −ΣSS

)
(ΣSS)−1/2

}−1
(ΣSS)−1/2,

and let A = I + (ΣSS)−1/2
(
Q̂SS −ΣSS

)
(ΣSS)−1/2. Then (Q̂SS)−1 = (ΣSS)−1/2A−1(ΣSS)−1/2.
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By the Bauer-Fike inequality, we have

|λ(A)− 1| ≤ ‖(ΣSS)−1/2
(
Q̂SS −ΣSS

)
(ΣSS)−1/2‖2 ≤ ‖ΣSS)−1/2‖22‖Q̂SS −ΣSS‖2.

Then by (4.34) and Assumption 3, |λ(A) − 1| = op(1). Hence λ(A−1) = 1 + op(1). Since A is

symmetrical, ‖A−1‖2 = Op(1). This together with Assumption 2 yields that

‖(Q̂SS)−1‖2 ≤ ‖(ΣSS)−1/2‖2‖A−1‖2‖(ΣSS)−1/2‖2 = Op(1). (4.35)

As a result, by (4.34) and (4.35), the first part of Proposition 2 follows easily from Lemma 8.

Next, we turn to the second term of Proposition 2, that is, verify the expression (4.5). Under

Assumption 4, we first notice that

∥∥Q̂ScS(Q̂SS)−1
∥∥
∞ ≤

∥∥ΣScS(ΣSS)−1
∥∥
∞ +

∥∥Q̂ScS(Q̂SS)−1 −ΣScS(ΣSS)−1
∥∥
∞

≤ 1− γ +
∥∥Q̂ScS(Q̂SS)−1 −ΣScS(ΣSS)−1

∥∥
∞. (4.36)

Then it suffices to show that
∥∥Q̂ScS(Q̂SS)−1 − ΣScS(ΣSS)−1

∥∥
∞ ≤

γ
2 . For this purpose, let

T := Q̂ScS(Q̂SS)−1 −ΣScS(ΣSS)−1, and we split T into two parts:

T := T1 + T2,

where T1 =
(
Q̂ScS −ΣScS

)
(Q̂SS)−1, and T2 = ΣScS(ΣSS)−1

(
Q̂SS −ΣSS

)
(Q̂SS)−1.

Similarly as before, by the union bound, Lemma 5 and the result of Theorem 2, we have

max
j∈Sc

∥∥e′j(Q̂ScS −ΣScS

)∥∥
2

= Op

(
s3/2
o

√
log(p/δ)

n

)
.

Since by (4.35), ‖(Q̂SS)−1‖2 can be treated as positive constant. Then if s3
o � n, we have

‖T1‖∞ ≤ max
j∈Sc

∥∥e′j(Q̂ScS −ΣScS

)∥∥
2
· ‖(Q̂SS)−1‖2 = Op

(
s3/2
o

√
log(p/δ)

n

)
. (4.37)

To bound T2, by Assumption 4 and (4.35), we have

‖T2‖∞ ≤ ‖ΣScS(ΣSS)−1‖∞‖(Q̂SS)−1‖∞‖Q̂SS −ΣSS‖∞ =
√
soOp

(
‖Q̂SS −ΣSS‖2

)
, (4.38)

since ‖A‖∞ ≤
√
so‖A‖2 for any matrix A ∈ RS×S . Then by bounds (4.34) and (4.38), we have

‖T2‖∞ = Op

(
s2
o

√
log(s2

o/δ)

n

)
. (4.39)

So combined with inequalities (4.36), (4.37) and (4.39), we have

∥∥Q̂ScS(Q̂SS)−1
∥∥
∞ ≤ 1− γ + ‖T1‖∞ + ‖T2‖∞ ≤ 1− γ

2
, (4.40)
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provided that
(
s2
o

√
log(p/δ)

n

)
= op(1). �

Appendix D: Proof for Lemma 2

Proof of Lemma 2. Since estimation error established in Theorem 3.1 of Huang et al.

(2013) holds under the particular setting p = so, We can apply this result over RS directly. To

be precise, by Theorem 3.1 of Huang et al. (2013), in the event
∥∥ ˙̀(βo1)

∥∥
∞ ≤ λ, we have

‖β̌S − βo1‖2 = Op

(√
soλ
/
F2(ξ, S)

)
,

where F2(ξ, S) has been defined in equation (3.4) over there. Moreover, with high probability

we have

F2(ξ, S) ≥ λmin

(
῭(βo1)

)
=
∥∥(῭(βo1))−1

∥∥
2
≥ 1

2

∥∥(ΣSS)−1
∥∥

2
= Op(1),

where the first inequality follows from the definition of F2(ξ, S), and the second inequality

follows from the results of Lemma 7 and Lemma 8, and the last one holds from Assumption 3.

In addition, if P{maxi≤nNi(τ) ≤ 1} = 1, as mentioned earlier, we have taken λ =
√

log(p/δ)/n,

which completes the proof of Lemma 2. �
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