Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/98564
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorHao, Men_US
dc.creatorLiu, KYen_US
dc.creatorXu, Wen_US
dc.creatorZhao, Xen_US
dc.date.accessioned2023-05-10T02:00:20Z-
dc.date.available2023-05-10T02:00:20Z-
dc.identifier.issn0162-1459en_US
dc.identifier.urihttp://hdl.handle.net/10397/98564-
dc.language.isoenen_US
dc.publisherAmerican Statistical Associationen_US
dc.rights© 2020 American Statistical Associationen_US
dc.rightsThis is an Accepted Manuscript of an article published by Taylor & Francis in Journal of the American Statistical Association on 23 Jan 2020 (published online), available at: http://www.tandfonline.com/10.1080/01621459.2019.1710155.en_US
dc.subjectFunctional Cox modelen_US
dc.subjectJoint Bahadur representationen_US
dc.subjectPartial likelihood ratio testen_US
dc.subjectPenalized partial likelihooden_US
dc.subjectRight-censored dataen_US
dc.titleSemiparametric inference for the functional Cox modelen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage1319en_US
dc.identifier.epage1329en_US
dc.identifier.volume116en_US
dc.identifier.issue535en_US
dc.identifier.doi10.1080/01621459.2019.1710155en_US
dcterms.abstractThis article studies penalized semiparametric maximum partial likelihood estimation and hypothesis testing for the functional Cox model in analyzing right-censored data with both functional and scalar predictors. Deriving the asymptotic joint distribution of finite-dimensional and infinite-dimensional estimators is a very challenging theoretical problem due to the complexity of semiparametric models. For the problem, we construct the Sobolev space equipped with a special inner product and discover a new joint Bahadur representation of estimators of the unknown slope function and coefficients. Using this key tool, we establish the asymptotic joint normality of the proposed estimators and the weak convergence of the estimated slope function, and then construct local and global confidence intervals for an unknown slope function. Furthermore, we study a penalized partial likelihood ratio test, show that the test statistic enjoys the Wilks phenomenon, and also verify the optimality of the test. The theoretical results are examined through simulation studies, and a right-censored data example from the Improving Care of Acute Lung Injury Patients study is provided for illustration. Supplementary materials for this article are available online.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationJournal of the American Statistical Association, 2021, v. 116, no. 535, p. 1319-1329en_US
dcterms.isPartOfJournal of the American Statistical Associationen_US
dcterms.issued2021-
dc.identifier.scopus2-s2.0-85078420026-
dc.identifier.eissn1537-274Xen_US
dc.description.validate202305 bcchen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberAMA-0215, a2342b-
dc.identifier.SubFormID47546-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS23081690-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Zhao_Semiparametric_Inference_Functional.pdfPre-Published version1.02 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

82
Citations as of Apr 14, 2025

Downloads

173
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

14
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

6
Citations as of Oct 10, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.