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ABSTRACT

This article studies penalized semiparametric maximum partial likelihood estimation and hy-

pothesis testing for the functional Cox model in analyzing right-censored data with both func-

tional and scalar predictors. Deriving the asymptotic joint distribution of finite-dimensional

and infinite-dimensional estimators is a very challenging theoretical problem due to the com-

plexity of semiparametric models. For the problem, we construct the Sobolev space equipped

with a special inner product and discover a new joint Bahadur representation of estimators

of the unknown slope function and coefficients. Using this key tool, we establish the asymp-

totic joint normality of the proposed estimators and the weak convergence of the estimated

slope function, and then construct local and global confidence intervals for an unknown slope

function. Furthermore, we study a penalized partial likelihood ratio test, show that the test

statistic enjoys the Wilks phenomenon, and also verify the optimality of the test. The theo-

retical results are examined through simulation studies, and a right-censored data example

from the Improving Care of Acute Lung Injury Patients study is provided for illustration.
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1 Introduction

Advances in information technology enable us to collect and process densely observed data

over some temporal or spatial domains. The resulting data are coined functional data in

order to differentiate them from the traditional, scalar data. Examples of functional data

include hippocampus radial distance data (Li and Luo, 2017), high dimensional microarray

gene expression data (Chen et al., 2011), and the Sequential Organ Failure Assessment data

(Gellar, et al., 2014, 2015). The explosion of functional data necessitates the development

of functional data analysis. Recently, Crambes, Kneip, and Sarda (2009), Yuan and Cai

(2010), Cai and Yuan (2012), Cheng and Shang (2015), and Shang and Cheng (2015),

among others, proposed roughness regularization methods to control the model complexity

in a continuous manner. This overcomes the imprecise control on the model complexity due

to the truncation parameter in the functional principal component analysis FPCA-based

approaches, as pointed out by Ramsay and Silverman (2005).

When time-to-event data are available, the proportional hazards model (Cox, 1972) is

commonly used for the analysis of such data. Under the Cox model, the hazard function of

a failure time for a subject takes the form:

h(t|Z) = h0(t) exp(θ>0 Z),

where h0(·) is an unspecified baseline hazard function, Z ∈ Rp is a covariate vector, and θ0 ∈

Rp is an unknown parameter. This model was further studied by Cox (1975), Tsiatis (1981),

Andersen and Gill (1982), Johansen (1983), and Jacobsen (1984), among others. When

functional covariates are involved, Chen et al. (2011) proposed the following functional Cox
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model:

h(t|Z,X(·)) = h0(t) exp

{
θ>0 Z +

∫
I
X(s)β0(s)ds

}
, (1.1)

where X(·) is a functional covariate and β0(·) is an unknown coefficient function. Clearly,

this model takes into account the effect of the entire trajectory of X(·) on the hazard func-

tion. Note that the Cox model with a time-dependent covariate only considers the effect

of X(·) on the hazards function at time t, where an overall effect of a functional covariate

on the hazard function cannot be explained. Chen et al. (2011) applied the functional Cox

model in studying the survival of diffuse large-B-cell lymphoma (DLBCL) patients in rela-

tion to the patients’ high-dimensional microarray gene expression, which are expressed as

functional predictors. Recently, Kong et al. (2018) established the rate of convergence of

the maximum approximate partial likelihood estimator and conducted a score test for testing

the nullity of the slope function related to functional predictors. Qu et al. (2016) studied

the asymptotic properties of the maximum partial likelihood estimator under the framework

of reproducing kernel Hilbert space and established the asymptotic normality and the effi-

ciency of the estimator of the scalar parameter. However, the asymptotic distribution of the

maximum partial likelihood estimator of the slope function has not been studied. Another

important issue is to study the partial likelihood ratio test, which has not been addressed in

the literature. Our goal is to address these challenging issues and to fill the gap in the study

of functional Cox model.

Motivated by Cheng and Shang (2015), we explore a joint Bahadur representation to

derive the asymptotic joint distribution of the maximum partial likelihood estimators of
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the slope function and coefficients in the functional Cox model. Different from Cheng and

Shang (2015) and Shang and Cheng (2015), we deal with right-censored data. The main

contributions of this paper are threefold. First, we construct the Sobolev space equipped with

a special inner product and deduced the joint Bahadur representation of the maximum partial

likelihood estimators of finite-dimensional and infinite-dimensional parameters. Second, we

establish the joint asymptotic normality of the estimated scalar and functional coefficients

and the weak convergence of the estimated functional coefficient in the Hilbert space. Third,

we develop a penalized partial likelihood ratio test for testing global effects of both scalar

and functional covariates on the hazard function.

The rest of this paper is organized as follows. In Section 2, we construct the Sobolev

space and present a penalized estimation approach for unknown regression parameters in

the functional Cox model. In Section 3, we derive a joint Bahadur representation of the

maximum partial likelihood estimators of scalar and functional parameters in the space with

a special inner product and establish the asymptotic properties of the proposed estimators.

In Section 4, we develop a penalized likelihood ratio test for a global hypothesis. In Section

5, we present simulation results to evaluate the performance of the proposed asymptotic

inference procedures. Section 6 illustrates an application of the proposed method to the data

obtained from the Improving Care of Acute Lung Injury Patients (ICAP) study (Needham

et al., 2006). Some concluding remarks are made in Section 7. All technical proofs are given

in the Supplemental Materials.
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2 Estimation Method

Denote the covariates that are incorporated in the functional Cox model (1.1) by W =

(Z>, X(·)). Under the right censorship, let T be the survival time, C be the censoring time,

Y = min(T,C) be the observed time, and ∆ = 1(T ≤ C) be the censoring indicator, where

1(·) is the indicator function. For simplicity, assume E(∆Z) = 0, and E{∆X(t)} = 0 for

any t ∈ I. Without loss of generality, we take I = [0, 1]. As usual, assume that the survival

time T and the censoring time C are conditionally independent given W . Our goal is to

estimate α0 = (θ>0 , β0(·)) to reveal the relationship between W and T . Suppose that β0(·)

belongs to the mth-order Sobolev space H(m)(I), which is abbreviated as H(m) for notational

simplicity:

H(m)(I) = {β : I 7→ R|β(j) is absolutely continuous for j = 0, 1, . . . ,m− 1, β(m) ∈ L2(I)},

where the constant m > 1/2 is known, β(j)(·) is the jth derivative of β(·), and L2(I) is the

L2 space defined in I.

Define ηα(W ) = θ>Z +
∫
IX(s)β(s) ds, and Y(t) = 1(Y ≥ t). The log partial likelihood

of α under model (1.1) given the data {(Yi,Wi,∆i), i = 1, . . . , n} is

ln(α) =
1

n

n∑
i=1

∆i

(
ηα(Wi)− log

[ 1

n

n∑
j=1

Yj(Yi) exp{ηα(Wj)}
])

.

To estimate α0, we propose to use the following penalized log partial likelihood function

ln,λ(α) = ln(α)− λ

2
J(β, β),

where J(β1, β2) =
∫
I β

(m)
1 (s)β

(m)
2 (s) ds is the penalty function, and λ is the penalty parameter
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which controls the balance between the bias and the smoothness of the parameter. Thus,

the penalized estimator of α0 is defined by α̂n,λ = arg maxα∈H ln,λ(α), where H = Rp×H(m).

3 Asymptotic Properties

Before stating the main results, we first introduce some notation and regularity conditions.

For any vector z, z⊗2 = zz>, z⊗1 = z, and z⊗0 = 1 with all of the elements being 1. Let

lλ(α) be limit of ln,λ(α), Sλ(α) be the Fréchet derivative of lλ(α), and let D be the Fréchet

derivative operator. Then

Sλ(α)α1 = E

{∫ τ

0

(
Eηα1(W )− E [Y(t) exp{ηα(W )}ηα1(W )]

E [Y(t) exp{ηα(W )}]

)
dN(t)

}
− λJ(β, β1),

and

DSλ(α0)α1α2

= −E
{∫ τ

0

(
E[Y(t) exp{ηα0(W )}ηα1(W )ηα2(W )]

E[Y(t) exp{ηα0(W )}]

−E[Y(t) exp{ηα0(W )}ηα1(W )]E[Y(t) exp{ηα0(W )}ηα2(W )](
E[Y(t) exp{ηα0(W )}]

)2
)
dN(t)

}
− λJ(β1, β2),

where τ is the end of the study. Motivated by Cheng and Shang (2015) and Shang and

Cheng (2015), we define the inner product for any αi = (θ>i , βi(·)) ∈ H (i = 1, 2) as the

negative second derivative of lλ(α) at α0:

〈α1, α2〉λ = −DSλ(α0)α1α2.

The corresponding norm is denoted as || · ||λ. Define

S
(k)
1 (t, α) =

1

n

n∑
i=1

[Yi(t) exp{ηα(Wi)}Z⊗ki ], s
(k)
1 (t, α) = E[Y(t) exp{ηα(W )}Z⊗k], k = 0, 1, 2,
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S
(1)
2 (t, s, α) =

1

n

n∑
i=1

[Yi(t) exp{ηα(Wi)}Xi(s)], s
(1)
2 (t, s, α) = E[Y(t) exp{ηα(W )}X(s)],

S
(2)
2 (t, s, v, α) =

1

n

n∑
i=1

[Yi(t) exp{ηα(Wi)}Xi(s)Xi(v)],

s
(2)
2 (t, s, v, α) = E[Y(t) exp{ηα(W )}X(s)X(v)],

Σ = E

{∫ τ

0

s
(2)
1 (t, α0)

s
(0)
1 (t, α0)

− s
(1)
1 (t, α0)

⊗2

s
(0)
1 (t, α0)2

dN(t)

}
,

and

F (s, t) =

∫ τ

0

Cov{X(s), X(t)|T = v,∆ = 1}E[Y(v) exp{ηα0(W )}]h0(v) dv,

where

Cov{X(s), X(t)|T = v,∆ = 1}

=E{X(s)X(t)|T = v,∆ = 1} − E{X(s)|T = v,∆ = 1}E{X(t)|T = v,∆ = 1}

=
s
(2)
2 (v, t, s, α0)

s
(0)
1 (v, α0)

− s
(1)
2 (v, s, α0)s

(1)
2 (v, t, α0)

s
(0)
1 (v, α0)2

.

For any β1, β2 ∈ H(m), define 〈β1, β2〉m =
∫
I

∫
I F (s, t)β1(s)β2(t) ds dt+λJ(β1, β2). Clearly,

the relationship between 〈α1, α2〉λ and 〈β1, β2〉m is given by 〈β1, β2〉m = 〈α1, α2〉λ with

α1 = (0T , β1) and α2 = (0T , β2). Then H(m) is a reproducing kernel Hilbert space (RKHS)

with 〈·, ·〉m. For simplicity, define a linear nonnegative definite and self-adjoint operator

Wλ and a bilinear operator V (·, ·) in H(m) as 〈Wλβ1, β2〉m = λJ(β1, β2) and V (β1, β2) =∫
I

∫
I F (s, t)β1(s)β2(t) ds dt, respectively. Then, we have 〈β1, β2〉m = V (β1, β2) + 〈Wλβ1, β2〉m.

Denote the reproducing kernel in H(m) by K(s, t).

We denote two positive sequences an and bn as an � bn if limn→∞(an/bn) = c > 0. If

c = 1, we denote a ∼ b. To establish the theoretical properties of the proposed estimator,

we need the following regularity conditions:
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(C1) (i) 0 < P (Y ≥ τ) < 1;

(ii) There exists a constant c1 > 0, for any α ∈ H, we have

E

∫ τ

0

[E{Y(t) exp{ηα0(W )}ηα(W )2}
E[Y(t) exp{ηα0(W )}]

− (E{Y(t) exp{ηα0(W )}ηα(W )})2(
E[Y(t) exp{ηα0(W )}]

)2 ]
dN(t)

≥ c1E{ηα(W )}2.

(C2) There exists a sequence of functions {hj}j≥1 ⊂ H(m) such that ||hj||L2 ≤ chj
a for each

j ≥ 1, some constants a ≥ 0, ch ≥ 0, and

V (hi, hj) = δij, J(hi, hj) = ρiδij, for any i, j ≥ 1,

where δij is the Kronecker’s notation, and ρi is a nondecreasing nonnegative sequence

satisfying ρi � i2k for some constant k > a + 1/2. Furthermore, any β ∈ H(m) admits

the Fourier expansion β =
∑∞

i=1 V (β, hi)hi with the convergence in H(m) under 〈·, ·〉m.

Set the projection of Z on X(·) as G ≡ (G1, G2, · · · , Gp)
> with

Gk(·) =
∞∑
j=1

∫
I
E
[ ∫ τ

0

E[Y(t) exp{ηα0(W )}ZkX(u)]

E[Y(t) exp{ηα0(W )}]

− E[Y(t) exp{ηα0(W )}Zk]
E[Y(t) exp{ηα0(W )}]

E[Y(t) exp{ηα0(W )}X(u)]

E[Y(t) exp{ηα0(W )}]
dN(t)

]
hj(u) duhj(·)

≡
∞∑
j=1

Gjkhj(·).

(C3) (i) Σ− V (G,G) is positive definite;

(ii) There exists b ∈ ((1 + 2a)/(2k), 1] such that
∑

j |Gjk|2ρbj <∞ for k = 1, . . . , p.
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(C4) There exist constants s ∈ (0, 1) and M0 > 0 such that E[exp{s(‖X‖L2 + ‖Z‖2)}] <∞,

and E{|ηα(W )|4} ≤M0{E|ηα(W )|2}2 for any α ∈ H.

Remark 3.1 Condition (C1)(i) is common in survival analysis, such as Condition (D) in

Andersen and Gill (1982), and Condition (C2) in Chen et al. (2010). Condition (C1)(ii)

holds when β = 0 under Condition (C3).

Remark 3.2 Following Shang and Cheng (2015), we consider the following integro-differential

equations:

(−1)my
(2m)
j (t) = ρj

∫
I
F (s, t)yj(s) ds,

y
(i)
j (0) = y

(i)
j (1) = 0, i = m,m+ 1, . . . , 2m− 1.

Let (ρj, yj) be the corresponding eigenvalues and eigenfunctions of the above eigen-system,

and let hj = yj/
√
V (yj, yj). Then (ρj, hj) satisfies Condition (C2) with k = m + r + 1 and

a = r + 1 if one of the following additional assumptions is satisfied:

(i) r = 0;

(ii) r ≥ 1, and for any i = 0, 1, . . . , r − 1, F (i,0)(0, t) = 0 for any t ∈ I, where F (i,0)(s, t) is

the ith order partial derivative with respect to s.

The relationships among (hj, ρj), K(·, ·) and Wλ are given as follows:

Kt(·) =
∞∑
j=1

hj(t)

1 + λρj
hj(·) and (Wλhj)(·) =

λρj
1 + λρj

hj(·).

This can be referred to Shang and Cheng (2015).
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Remark 3.3 From the definition of G, we have G = 0 when X(·) and Z are independent.

Furthermore, under Condition (C3)(ii), we have that V (G,WλG)→ 0 and V (WλG,WλG)→

0 with λ→ 0. In fact, direct calculations yield

Σ− V (G,G) =E

∫ τ

0

[
{Z −

∞∑
k=1

Gk

∫
I
X(s)hk(s) ds}

−
E[Y(s) exp{ηα0(W )}{Z −

∑∞
k=1Gk

∫
IX(s)hk(s) ds}]

E[Y(s) exp{ηα0(W )}]

]⊗2
dN(s).

Thus Condition (C3)(i) is similar to Assumption A3 in Cheng and Shang (2015), and is

required to guarantee the existence of asymptotic variance of the proposed estimator. Condi-

tion (C3)(ii) is the same as that used in Theorem 3.1 of Cheng and Shang (2015) such that

Rw, Pλ and R̃u are well defined in the Supplementary Materials.

Remark 3.4 Condition (C4) on covariates is weaker than the conditions required by Qu et

al. (2016).

In the following, we set h = λ1/(2k).

Theorem 3.1 (Rate of Convergence) Suppose that Conditions (C1)–(C4) hold. If

h = o(1) and n−1/2h−(a+1)− 2k−2a−1
4m {log(n)}2{log log(n)}1/2 = o(1),

then α̂n,λ is the unique estimate for α0 and ‖α̂n,λ−α0‖λ = Op(rn), where rn = (nh)−1/2 +hk.

This theorem shows that when we choose λ = n−(2k)/(2k+1), the estimate enjoys the same

order of convergence as that in Qu et al. (2016).
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For ease of interpretation, define Sn(α) and Sn,λ(α) be the Fréchet derivatives of ln(α)

and ln,λ(α), respectively. A direct calculation yields that the Fréchet derivative of ln,λ(α) at

the direction of α1 is

Sn,λ(α)α1 =
1

n

n∑
i=1

∆i

[
ηα1(Wi)−

∑n
j=1 Yj(Yi) exp{ηα(Wj)}ηα1(Wj)∑n

j=1 Yj(Yi) exp{ηα(Wj)}

]
− λJ(β, β1)

≡ Sn(α)α1 − λJ(β, β1).

Theorem 3.2 (Joint Bahadur Representation) Suppose that Conditions (C1)–(C4) hold. If

n−1/2h−(a+1)− 2k−2a−1
4m {log(n)}2{log log(n)}1/2 = o(1),

nh2k(1+b) = o(1), and
∞∑
j=1

V (β0, hj)
2ρ2j <∞,

then we have ‖α̂n,λ − α0 − Sn,λ(α0)‖λ = Op(an), where

an = n−1/2h−(4ma+6m−1)/4mrn{log log(n)}1/2 log(n)2 + h−1/2r2n, and rn = (nh)−1/2 + hk.

Based on the joint Bahadur representation, we can establish the asymptotic joint distri-

bution of the proposed estimators of the slope function and the coefficients.

Theorem 3.3 (Asymptotic Joint Distribution) Suppose that the conditions of Theorem 3.2

hold. Furthermore, assume that supj≥1 ‖hj‖∞ ≤ chj
a, n1/2anh

−(a+1/2) = o(1), n1/2hk(1+b) =

o(1),
∑∞

j=1 V (β0, hj)
2ρ2j <∞, and h(2a+1)

∑∞
j=1

‖hj(t)‖2∞
(1+λρj)2

� σ2
t > 0. Then we have

√
n(θ̂n,λ − θ0)

√
nhha{β̂n,λ(t)− β0(t)}

→ N(0,Φ),
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where

Φ =

{Σ− V (G,G)}−1 0

0 σ2
t

 .
Here, Σ can be consistently estimated by

Σ̂ =
1

n

n∑
i=1

[∫ τ

0

V̂ar(Z|T = t,∆ = 1)Yi(t) exp{ηα̂(Wi)} dΛ̂0(t)

]

=
1

n

n∑
i=1

[∫ τ

0

[S(2)
1 (t, α̂)

S
(0)
1 (t, α̂)

− {S
(1)
1 (t, α̂)}⊗2

{S(0)
1 (t, α̂)}2

]
Yi(t) exp{ηα̂(Wi)} dΛ̂0(t)

]
,

where

Λ̂0(t) =

∫ t

0

∑n
k=1 dNk(s)∑n

j=1 Yj(s) exp{ηα̂(Wj)}
.

Theorem 3.3 implies that, with certain under-smoothing conditions, the asymptotic bias

for the estimation of β0(t0) vanishes. Hence, applying Theorem 3.3 together with the

Delta-method immediately yields the pointwise confidence interval (CI) for some real-valued

smooth function of β0(t) at any fixed point t0 ∈ I, denoted by ρ
{
β0(t0)

}
. Let ρ̇(·) be the

first derivative of ρ(·). By Theorem 3.3, for any fixed point t0 ∈ I and ρ̇
{
β0(t0)

}
6= 0, we

have

P

ρ{β0(t0)} ∈
ρ{β̂n,λ(t0)}± zξ/2 ρ̇

{
β̂n,λ(t0)

}√∑∞
j=1(|hj(t)|2/(1 + λρj)2)
√
n


→ 1− ξ

as n→∞, where Φ(·) is the standard normal cumulative distribution function and zξ is the

lower ξ-th quantile of Φ(·), that is Φ(zξ) = 1− ξ.
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Theorem 3.4 (Weak Convergence of β̂n,λ(·)) Assume that the conditions in Theorem 3.3

hold. Then
√
nhha{β̂n,λ(s)− β0(s)} converges to a mean zero Gaussian process G(s) in the

Hilbert space H(m) with the inner product V (·, ·), where the covariance for G(s) at s1 and s2

is given by

Γ(s1, s2) = h1+2a

∞∑
j=1

hj(s1)hj(s2)

(1 + λρj)2
.

To construct a simultaneous confidence band for β0(s) over a closed subinterval [ζ, 1−ζ] ⊆

I, we can employ the resampling method of Lin et al. (1993) for the distributional approxi-

mation. For illustration, let (ε1, . . . , εn) be independent standard normal random variables,

independent of the data (Yi,∆i,Wi), i = 1, . . . , n. It can be shown that the distribution of

the limiting process G(s) can be approximated by

Ĝ(s) ≡ 1√
nh−a−1/2

n∑
i=1

∫
I
Kt(s) dW̃i(t)εi,

where

W̃i(s) =

∫ τ

0

[
Xi(s)−

∑n
j=1 Yj(t) exp{ηα0(Wj)}Xj(s)∑n

j=1 Yj(t) exp{ηα0(Wj)}

]
dMi(t).

In view of this fact, we obtain a large number of realizations of Ĝ(s) by repeatedly

generating the standard normal random samples (ε1, . . . , εn) while fixing the data. Thus, one

may use the empirical distribution of these random samples to approximate the distribution

of G(s). In particular, the αth-percentile of supζ≤s≤1−ζ |G(s)| can be approximated by the

empirical percentile of a large number of realizations of supζ≤s≤1−ζ |Ĝ(s)|, denoted by Ĝα. As

a result, we can construct the global confidence band for β0(s) with s ∈ [ζ, 1− ζ] as follows:(
β̂n,λ(s)−

1√
nhha

Ĝα, β̂n,λ(s) +
1√
nhha

Ĝα
)
.
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4 Penalized Partial Likelihood Ratio Test

In this section, we consider testing the following “global” hypothesis:

H0 : α = α0 versus H1 : α 6= α0,

where α0 ∈ H. The penalized partial likelihood ratio rest (PLRT) statistic is defined by

PLRTn,λ ≡ ln,λ(α0)− ln,λ(α̂n,λ).

Next, we derive the asymptotic null distribution of PLRTn,λ.

Theorem 4.1 (Partial Likelihood Ratio Test) Suppose that Conditions (C1)–(C4) hold. As-

sume that

nh2k(1+b) = O(1), nh2 →∞, n1/2an = o(1), nr3n = o(1),
∞∑
j=1

V (β0, hj)
2ρ2j <∞,

n1/2h−{a+1/2+(2k−2a−1)/(4m)}r2n{log(n)}2{log log(n)}1/2 = o(1),

and

n1/2h−{2a+1+(2k−2a−1)/(4m)}r3n{log(n)}3{log log(n)}1/2 = o(1).

Then under H0, we have

(2νλ)
−1/2(−2nγλPLRTn,λ − nγλ‖Wλβ0‖2m − νλ)

d−−→ N(0, 1),

where σ2
λ ≡

∑∞
j=1 h/(1 + λρj), ρ2λ ≡

∑∞
j=1 h/(1 + λρj)

2, γλ ≡ σ2
λ/ρ

2
λ, and νλ ≡ h−1σ4

λ/ρ
2
λ.

It follows from Theorem 3.3 that n‖Wλβ0‖2m = o(nλ) = o(νλ). Hence, we have

−2nγλPLRTn,λ ∼ N(νλ, 2νλ), which is nearly χ2
νλ

as n→∞. This shows that PLRT enjoys

the Wilks phenomenon.
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Remark 4.1 (Composite Hypothesis) Similar to Remark 5.1 of Shang and Cheng (2015),

we can deal with some composite hypothesis testing. By examining the proof of Theorem

4.1, we can find that the asymptotic null distribution derived therein remains the same even

when the hypothesized value α0 is unknown. An important consequence is that the proposed

likelihood ratio approach can also be used to test a composite hypothesis such as

H0 : θ = θ0 and β ∈ Pd,

where Pd = {β(t) : β(t) =
∑d

j=0 t
jbj}. Using the similar arguments used in Remark 5.1 of

Shang and Chang (2015), we can conclude that the asymptotic null distribution for testing

such composite hypothesis follows χ2
νλ

, which is the same as that given in Theorem 4.1.

To conclude this section, we show that the PLRT achieves the optimal minimax rate

of testing given by Ingster (1993) based on the uniform version of the joint Bahadur rep-

resentation. To this end, we consider the alternative hypothesis H1n : α = αn0 , where

αn0 = α0 + αn, α0 ∈ H and αn belongs to the alternative value set A = {α ∈ H, ‖θ‖2 ≤

ζ, ‖β‖L2 ≤ ζ, J(β, β) ≤ ζ} for some constant ζ > 0.

Theorem 4.2 Suppose that the conditions of Theorem 4.1 hold, and under H1n : α = αn0,

‖α̂n,λ − αn0‖λ = Op

{
(nh)−1/2 + hk

}
holds uniformly over αn0 ∈ A. If nh3/2+a/2 → ∞ as

n→∞, then, for any δ ∈ (0, 1), there always exist positive constants b0 and N such that

inf
n≥N

inf
αn∈A,‖αn‖λ≥b0ηn

P (reject H0|H1n is true) ≥ 1− δ,

where ηn ≥
√
h2k + (nh1/2)−1. Moreover, the minimal lower bound of ηn is n−2k/(4k+1), which

can be achieved when h = h∗∗ = n−2/(4k+1).
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5 Simulation Studies

In this section, we conduct simulation studies to assess the finite-sample performance of the

estimated confidence interval given in Section 3 and the PLRT developed in Section 4.

We use a setup similar to that in Qu et al. (2016). The functional covariate X(·) is

defined as

X(s) =
50∑
k=1

ξkUkφk(s),

where Uk are independently sampled from the uniform distribution on [−3, 3], ξk = (−1)k+1k−1/2,

φ1 = 1, and φk+1(s) =
√

2 cos(kπs) for k ≥ 1.

We set β0(t) = 9/(50 − 45t) − 0.9, which is from a Sobolov space H(2)(I). The penalty

function is J(β, β) =
∫
I{β

(2)(t)}2 dt. The scalar covariate Z is set to be univariate with

distribution N(0, 1) and the corresponding coefficient θ0 to be 1. The failure time T is

generated from the functional Cox model:

h(t|W ) = h0(t) exp

{
θ>0 Z +

∫ 1

0

X(s)β0(s)ds

}
,

where h0(t) = t2. Given W , the failure time T follows a Weibull distribution. The censoring

time C is generated independently, following an exponential distribution with parameter γ

which controls the censoring rate. Here, γ = 15 and 3.9 result in censoring rates around 12%

and 33%, respectively. We consider the sample sizes n = 200 and 400. We adopt the cubic

spline functions for the estimation of the functional coefficient. The number of knots is at

the order of qn = [2n1/5], and the knots are equally spaced. The order m of Sobolev space is

2.
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The proposed estimation and testing procedures are implemented in Matlab program-

ming language. In particular, the eigenvalues and eigenfunctions are solved using eigs func-

tion from Chebfun package (version 5), an open source software package. For details, one

can refer to Driscoll, Bornemann and Trefethen (2008). For each combination of censoring

rate and n, the simulation is repeated 1000 times.

For the determination of the optimal tuning parameter, we use the cross-validated log

partial likelihood method (CV L) (Verweij and Houwelingen, 1993). Let α̂λ(−i) be the value of

α that maximizes lλ,(−i), the penalized log partial likelihood when observation i is omitted.

Given a value of λ, the CV L is given by CV Lλ =
∑n

i=1 lλ,i(α
λ
(−i)), where lλ,i(·) = lλ(·) −

lλ,(−i)(·) is the contribution of observation i to the penalized log partial likelihood. Using the

CV L, we find that the optimal tuning parameter is about 10−6 based on 10 Monte Carlo

trials. The tuning parameter, therefore, is chosen to be λ = 10−6 to reduce the computation

time in our simulations. One may also consider less computationally intensive methods such

as AIC (Gellar et al., 2015) and GCV (Qu et al., 2016).

Figure 1 displays an instance of estimated β0(·) and the pointwise 95% confidence intervals

among 1000 simulations. The pointwise average of the estimated β0(·) and the empirical

coverage probability of the 95% pointwise confidence interval based on 1000 simulations are

shown in Figures 2 and 3, respectively. Table 1 reports the bias (BIAS), the sample standard

error of the estimates (SSE), the average of the estimated standard errors (ESE), and the

empirical coverage probability (CP) at t = 0.1, 0.5, 0.9. The simulation results are consistent

with Theorem 3.3. It is apparent that when n increases from 200 to 400 with the censoring
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rate fixed, the average bias and the standard error decrease steadily. In particular, these

results suggest that the estimator of β0(·) is consistent. Furthermore, the empirical coverage

probability also approaches to the nominal level 95%. The average ESE at 12% censoring

rate is lower in comparison to that at 33% censoring rate. This is in line with the expectation

that the lower the censoring rate is, the more accurate the estimate becomes.

For the regression coefficient of the scalar covariate, the BIAS, SSE, ESE, and CP of the

estimated θ̂n,λ are given in Table 2 for each setting of censoring rate and sample size over

1000 repetitions. As the sample size increases, the average of θ̂n,λ approaches to the true

value, the standard deviation reduces, and the coverage probability approaches to 95% given

a fixed censoring rate. Similarly, we observe these trends as the censoring rate reduces for a

given sample size.

In summary, the simulation results in Tables 1 and 2 indicate that the estimates of

both scalar and functional parameters are consistent and the proposed variance estimation

procedure provides reasonable estimation of variances. Also the results on the empirical

coverage probability suggest that the normal approximation is appropriate.

To study the performance of the penalized partial likelihood ratio test, we calculate the

estimated sizes and powers of the PLRT under H0 : α = (θ0, β0(·)), that is, the percentage

of rejecting H0. We consider α under different signal strengths. Specifically, α = (θ0 +

c, β0(·) + c), where c = 0.0, 0.1, 0.3, 0.5. Table 3 summarizes the percentages of rejecting H0

over 1,000 simulations. These results demonstrate the good performance of the PLRT. The

power of the test increases as sample size n increases, and the power slightly decreases as
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the censoring rate increases.

6 An Application

In this section, we apply the proposed method to the Sequential Organ Failure Assessment

(SOFA) data obtained from the Improving Care of Acute Lung Injury Patients (ICAP) study

(Needham et al., 2006; Gellar et al., 2014, 2015). The primary goal of this prospective cohort

study is to investigate the long-term complications of patients who suffer from acute lung

injury/acute respiratory distress syndrome (ALI/ARDS).

The ICAP study involves 520 subjects, with 237 (46%) dying in the intensive care unit

(ICU). Out of the 520 subjects, 161 subjects (31.0%) died within the first week in ICU,

and they are excluded from the analysis. Therefore, the proposed method is applied to

the remaining 359 subjects. In the ICAP study, data were recorded once the patients were

admitted in the ICU, and then daily during hospitalization. The SOFA score is one of

the measurements recorded daily. SOFA is a measure of the overall organ function status

of a patient. It is composed of respiratory, cardiovascular, coagulation, liver, renal, and

neurological components. The score of each component ranges from 0 to 4, with higher

scores suggesting inferior organ function. The SOFA score, ranging from 0 to 24, is then

the sum of these six scores. We treat the history of each subject’s SOFA scores, in the first

week, as a functional covariate, X(s), where s is the number of days since the admission

to the ICU. Trajectories of the SOFA score of subjects who died after the first week of

ICU hospitalization and those who survived are depicted in Figure 4. It is apparent that
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among patients who manage to survive, the pointwise averages of SOFA scores are declining,

whereas among patients who died after the first week of ICU hospitalization, the averages

are relatively stable. Our model includes three scalar covariates as controls of a subject’s

baseline risk. They are age, gender, and Charlson co-morbidity index (Charlson et al., 1987).

Our goal is to estimate the association between the trajectories of SOFA score and mor-

tality among subjects who were hospitalized in ICU for more than a week. We adopt the

cubic spline functions for the estimation of the functional parameter. The number of knots

is at the order of qn = [2n1/5] = 7, and the knots are equally spaced. The λ = 10−3 leads to

the optimal penalty according to CV L.

We plot the estimated coefficient function β̂n,λ(·) in Figure 5. The result suggests that

there is a functional association between time to death during the ICU stay and the SOFA

score function for t ∈ [0.75, 1], which corresponds to the sixth and the seventh day of ICU

stay. This implies that the SOFA score in last two days in the first week of ICU stay may

be used as an indicator of the one’s hazard.

Table 4 summarizes the estimation of the regression coefficients of the scalar covariates.

In addition to the functional covariate, patients’ age and Charlson co-morbidity index seem

to have positive effects on the hazard. On the other hand, the gender shows no significant

association with the hazard of death.
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7 Concluding Remarks

This article focuses on the development of semiparametric inference for the functional Cox

model with right-censored data. We have proposed a penalized partial likelihood approach for

the estimation of model parameters and established the asymptotic properties including the

consistency, the convergence rate, and the limiting distribution of the proposed estimators.

In particular, since the overall convergence rate of the proposed estimators cannot achieve the

standard rate n−1/2, deriving the asymptotic joint distribution of the functional and scalar

estimators becomes more difficult. To overcome the difficulty, we have investigated the

joint Bahadur representation of finite-dimensional and infinite-dimensional estimators in the

Sobolev space equipped with a proper inner product. There are two significant contributions

made to the study of the functional Cox model. One is that the asymptotic joint normality

of the estimators of the slope function and coefficients has been obtained; another is that

the partial likelihood ratio test with the Wilks phenomenon and the optimality has been

developed. These two important issues have not been addressed in the previous research. Our

new results will provide more insights and deeper understanding about effects of functional

predictors on the hazard function of failure time. Our simulation studies demonstrate that

the proposed estimation approach performs well and the penalized partial likelihood ratio

test has a good power.

Note that the definition of the inner product plays a key role for deriving the theoretical

properties. Based on the specific inner product, we can establish Lemma B.1 and then derive

the joint Bahadur representation of the proposed estimators. Clearly, the asymptotic joint
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distribution of the proposed estimator in Theorem 3.3 and the asymptotic null distribution

of the proposed partial likelihood ratio test statistic in Theorem 4.1 as well as the optimality

of the test in Theorem 4.2 do not reply on the definition of the inner product. Some other

inner products satisfying Lemma B.1 may be used to derive the joint Bahadur representation

in Theorem 3.2. This needs to be further explored.

The proposed approach can be extended to making inference for the following nonpara-

metric Cox’s proportional hazards models in Chen et al. (2010):

h(t|X) = exp{g0(X)}h0(t),

where h(t|X) is the hazard function, h0(t) is the baseline hazard function, and g0(·) is an

unknown function. Denote ln(g) and ln,λ(g) as the partial likelihood and the penalized partial

likelihood, respectively. Then we have

ln,λ(g) ≡ln(g)− λ

2
J(g, g)

=
1

n

n∑
i=1

∆i

[
g(Xi)− log

{
1

n

n∑
j=1

Yj(Yi) exp(g(Xj))

}]
− λ

2
J(g, g).

Note that the first and second Fréchet derivatives of ln,λ(g) at the direction of g1 and g2 are

given by

Sn,λ(g)g1 =
1

n

n∑
i=1

∆i

[
g1(Xi)−

∑n
j=1 Yj(Yi) exp{g(Xj)}g1(Xj)∑n

j=1 Yj(Yi) exp{g(Xj)}

]
− λJ(g1, g),

DSn,λ(g)g1g2 =− 1

n

n∑
i=1

∆i

[∑n
j=1 Yj(Yi) exp{g(Xj)}g1(Xj)g2(Xj)∑n

j=1 Yj(Yi) exp{g(Xj)}

−
∑n

j=1 Yj(Yi) exp{g(Xj)}g1(Xj)
∑n

j=1 Yj(Yi) exp{g(Xj)}g2(Xj)

(
∑n

j=1 Yj(Yi) exp{g(Xj)})2

]
− λJ(g1, g2).
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Assume that g0(·) belongs to the mth-order Sobolev space H(m). Define an inner product in

the space as

〈g1, g2〉λ =E

∫ τ

0

[
E[Y(t) exp{g0(X)}g1(X)g2(X)]

E[Y(t) exp{g0(X)}]

−E[Y(t) exp{g0(X)}g1(X)]E[Y(t) exp{g0(X)}g2(X)]

(EY(t) exp{g0(X)})2

]
dN(t) + λJ(g1, g2).

Thus H(m) is a reproducing kernel Hilbert space. Following this step, our method can be

used to handle the model proposed in Chen et al. (2010).

A further interesting research is to explore other useful functional models such as func-

tional accelerated failure time models and functional additive hazards models with right-

censored data, where a partial likelihood is unavailable.

Supplementary Materials

The Supplementary Materials include the proofs of lemmas and theorems.
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Table 1: Simulation results for the proposed estimate of β0(t) at t = 0.1, 0.5, 0.9.

n = 200 n = 400

0.1 0.5 0.9 0.1 0.5 0.9

12% BIAS -0.0504 -0.0431 -0.0747 -0.0189 -0.0218 -0.0400

SSE 0.1518 0.1372 0.1751 0.1042 0.1088 0.1223

ESE 0.1927 0.1602 0.2156 0.1343 0.1117 0.1501

CP 0.9750 0.9680 0.9740 0.9840 0.9510 0.9820

33% BIAS -0.0539 -0.0514 -0.0914 -0.0241 -0.0270 -0.0531

SSE 0.1704 0.1578 0.1919 0.1245 0.1269 0.1419

ESE 0.1999 0.1658 0.2238 0.1391 0.1158 0.1558

CP 0.9750 0.9510 0.9560 0.9690 0.9200 0.9570
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Table 2: Simulation results for the proposed estimate of θ0.

n = 200 n = 400

12% BIAS 0.0339 0.0154

SSE 0.1070 0.0717

ESE 0.1170 0.0811

CP 0.9520 0.9690

33% BIAS 0.0392 0.0212

SSE 0.1261 0.0811

ESE 0.1224 0.0849

CP 0.9240 0.9500

200 400

12%
33%

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
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Figure 1: Graphical displays of β̂n,λ(·) and the pointwise 95% confidence intervals of β0(t). The dashed

lines represent β0(·) whereas the solid lines represent β̂n,λ(·).
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Table 3: The simulated sizes and powers of the likelihood ratio test for H0 : α = (θ>0 , β0(·)).

c 200 400

12% 0.0 0.0510 0.0410

0.1 0.2320 0.5680

0.3 1.0000 1.0000

0.5 1.0000 1.0000

33% 0.0 0.0510 0.0490

0.1 0.1610 0.4570

0.3 0.9950 1.0000

0.5 1.0000 1.0000

200 400

12%
33%

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

-2.5

-2.0

-1.5

-2.5

-2.0

-1.5

t

b̂(t)

Figure 2: Graphical displays of the pointwise averages β̂n,λ(·). The dashed lines represent β0(·) whereas

the solid lines represent the pointwise averages of β̂n,λ(·).
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Figure 3: Graphical displays of the pointwise coverage probabilities (CP). The dashed lines represent 95%

whereas the solid lines represent the pointwise CP of β0(·).
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Figure 4: Trajectories of the SOFA score of subjects who died after the first week of the ICU

hospitalization and those who survived. The red lines are the pointwise average of the SOFA score.
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Figure 5: The estimated coefficient function β̂n,λ(·) and the pointwise 95% confidence interval for the

SOFA data analysis.

Table 4: Estimation results of regression coefficients of scalar covariates for the SOFA data

analysis

θ̂n,λ S.E. t-value

Age 0.0151 0.0015 10.0667

Gender (male=1) 0.1640 0.1331 1.2322

Charlson Index -0.0348 0.0034 -10.2353




