Please use this identifier to cite or link to this item:
http://hdl.handle.net/10397/98534
| DC Field | Value | Language |
|---|---|---|
| dc.contributor | Department of Applied Mathematics | en_US |
| dc.creator | Li, B | en_US |
| dc.creator | Ueda, Y | en_US |
| dc.creator | Zhou, G | en_US |
| dc.date.accessioned | 2023-05-10T02:00:08Z | - |
| dc.date.available | 2023-05-10T02:00:08Z | - |
| dc.identifier.issn | 0036-1429 | en_US |
| dc.identifier.uri | http://hdl.handle.net/10397/98534 | - |
| dc.language.iso | en | en_US |
| dc.publisher | Society for Industrial and Applied Mathematics | en_US |
| dc.rights | © 2020 Society for Industrial and Applied Mathematics | en_US |
| dc.rights | The following publication Li, B., Ueda, Y., & Zhou, G. (2020). A second-order stabilization method for linearizing and decoupling nonlinear parabolic systems. SIAM Journal on Numerical Analysis, 58(5), 2736-2763 is available at https://doi.org/10.1137/19M1296136. | en_US |
| dc.subject | Nonlinear parabolic system | en_US |
| dc.subject | Stabilization | en_US |
| dc.subject | Linearization | en_US |
| dc.subject | Decoupling | en_US |
| dc.subject | Convergence | en_US |
| dc.title | A second-order stabilization method for linearizing and decoupling nonlinear parabolic systems | en_US |
| dc.type | Journal/Magazine Article | en_US |
| dc.identifier.spage | 2736 | en_US |
| dc.identifier.epage | 2763 | en_US |
| dc.identifier.volume | 58 | en_US |
| dc.identifier.issue | 5 | en_US |
| dc.identifier.doi | 10.1137/19M1296136 | en_US |
| dcterms.abstract | A new time discretization method for strongly nonlinear parabolic systems is constructed by combining the fully explicit two-step backward difference formula and a second-order stabilization of wave type. The proposed method linearizes and decouples a nonlinear parabolic system at every time level, with second-order consistency error. The convergence of the proposed method is proved by combining energy estimates for evolution equations of parabolic and wave types with the generating function technique that is popular in studying ordinary differential equations. Several numerical examples are provided to support the theoretical result. | en_US |
| dcterms.accessRights | open access | en_US |
| dcterms.bibliographicCitation | SIAM journal on numerical analysis, 2020, v. 58, no. 5, p. 2736-2763 | en_US |
| dcterms.isPartOf | SIAM journal on numerical analysis | en_US |
| dcterms.issued | 2020 | - |
| dc.identifier.scopus | 2-s2.0-85094169601 | - |
| dc.identifier.eissn | 1095-7170 | en_US |
| dc.description.validate | 202305 bcch | en_US |
| dc.description.oa | Version of Record | en_US |
| dc.identifier.FolderNumber | AMA-0140 | - |
| dc.description.fundingSource | RGC | en_US |
| dc.description.pubStatus | Published | en_US |
| dc.identifier.OPUS | 54045598 | - |
| dc.description.oaCategory | VoR allowed | en_US |
| Appears in Collections: | Journal/Magazine Article | |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| 19m1296136.pdf | 991.66 kB | Adobe PDF | View/Open |
Page views
157
Last Week
69
69
Last month
Citations as of Nov 10, 2025
Downloads
92
Citations as of Nov 10, 2025
SCOPUSTM
Citations
5
Citations as of Dec 19, 2025
WEB OF SCIENCETM
Citations
5
Citations as of Dec 18, 2025
Google ScholarTM
Check
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.



