Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/97559
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Building and Real Estateen_US
dc.creatorLiao, Ten_US
dc.creatorDai, Yen_US
dc.creatorCheng, Cen_US
dc.creatorHe, Qen_US
dc.creatorLi, Zen_US
dc.creatorNi, Men_US
dc.date.accessioned2023-03-06T01:20:06Z-
dc.date.available2023-03-06T01:20:06Z-
dc.identifier.issn0378-7753en_US
dc.identifier.urihttp://hdl.handle.net/10397/97559-
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.rights© 2021 Elsevier B.V. All rights reserved.en_US
dc.rights© 2021. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.en_US
dc.rightsThe following publication Liao, T., et al. (2021). "A hybrid system integrating solid oxide fuel cell and thermo-radiative-photovoltaic cells for energy cascade utilization." Journal of Power Sources 512: 230538 is available at https://dx.doi.org/10.1016/j.jpowsour.2021.230538.en_US
dc.subjectEnergy cascade utilizationen_US
dc.subjectSolid oxide fuel cellen_US
dc.subjectThermophotovoltaic cellen_US
dc.subjectThermoradiative cellen_US
dc.subjectWaste heat recoveryen_US
dc.titleA hybrid system integrating solid oxide fuel cell and thermo-radiative-photovoltaic cells for energy cascade utilizationen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume512en_US
dc.identifier.doi10.1016/j.jpowsour.2021.230538en_US
dcterms.abstractA novel hybrid system coupling solid oxide fuel cell (SOFC) with thermoradiative (TR) and photovoltaic (PV) cells is proposed, evaluated, and optimized for energy cascade utilization. Theories of electrochemistry, Planck radiative heat transfer, and first law of thermodynamics are applied to assess and optimize the performance of the hybrid system. Firstly, energy balance analysis is conducted to obtain suitable area ratio between the subsystems and the SOFC. A homo-structure InAs–InAs is chosen as an example of the TP-PV cells. The peak power density of 0.669 W cm−2 and the maximum efficiency of 0.770 and the relevant work conditions are achieved through parametric optimal analysis. It is also found that decreasing the leakage resistance of the SOFC can enhance electricity production and efficiency of the hybrid system. Secondly, a GaSb-InSb TP-PV cells are adopted to couple with the SOFC for performance enhancement. Finally, the positive effects of back surface reflector and the negative effects of irreversible heat transfers on the hybrid system are discussed. The obtained results are helpful for designing and optimizing the SOFC-TR-PV hybrid systems.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationJournal of power sources, 15 Nov. 2021, v. 512, 230538en_US
dcterms.isPartOfJournal of power sourcesen_US
dcterms.issued2021-11-15-
dc.identifier.scopus2-s2.0-85115157875-
dc.identifier.eissn1873-2755en_US
dc.identifier.artn230538en_US
dc.description.validate202303 bcwwen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberBRE-0025-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextHK PolyUen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS56499134-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Liao_Hybrid_System_Integrating.pdfPre-Published version1.11 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

94
Last Week
3
Last month
Citations as of Nov 30, 2025

Downloads

92
Citations as of Nov 30, 2025

SCOPUSTM   
Citations

16
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

14
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.