Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/97459
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Civil and Environmental Engineeringen_US
dc.creatorZhang, Pen_US
dc.creatorYin, ZYen_US
dc.creatorJin, YFen_US
dc.creatorLiu, XFen_US
dc.date.accessioned2023-03-06T01:18:40Z-
dc.date.available2023-03-06T01:18:40Z-
dc.identifier.issn1861-1125en_US
dc.identifier.urihttp://hdl.handle.net/10397/97459-
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.rights© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021en_US
dc.rightsThis version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use (https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms), but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1007/s11440-021-01170-4en_US
dc.subjectConstitutive modelen_US
dc.subjectEvolutionary computationen_US
dc.subjectExtreme learning machineen_US
dc.subjectNeural networken_US
dc.subjectOptimizationen_US
dc.subjectSoilsen_US
dc.titleModelling the mechanical behaviour of soils using machine learning algorithms with explicit formulationsen_US
dc.typeJournal/Magazine Articleen_US
dc.description.otherinformationTitle on author’s file: Modelling the mechanical behaviour of soils using machine learning algorithms with explicit formulations: a comparative studyen_US
dc.identifier.spage1403en_US
dc.identifier.epage1422en_US
dc.identifier.volume17en_US
dc.identifier.issue4en_US
dc.identifier.doi10.1007/s11440-021-01170-4en_US
dcterms.abstractThis study systematically presents the application of machine learning (ML) algorithms for constructing a constitutive model for soils. A genetic algorithm is integrated with ML algorithms to determine the global optimum model, and the k-fold cross-validation method is used to enhance the models’ robustness. Three typical ML algorithms with formulations explicitly expressed [i.e., back-propagation neural network (BPNN), extreme learning machine (ELM) and evolutionary polynomial regression (EPR)], and two modelling strategies (i.e. total or incremental stress–strain strategies) are used. A synthetic database is first generated based on a simple constitutive model to objectively evaluate the performance of three ML algorithms and two modelling strategies. Next, the optimum ML algorithm and the well evaluated modelling strategy are applied to experimental tests for examining its robustness. All results indicate that a BPNN-based constitutive model using the incremental stress–strain strategy performs best in modelling the mechanical behaviour of soils in terms of interpolation and extrapolation abilities, followed by ELM and then EPR.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationActa geotechnica, Apr. 2022, v. 17, no. 4, p. 1403-1422en_US
dcterms.isPartOfActa geotechnicaen_US
dcterms.issued2022-04-
dc.identifier.scopus2-s2.0-85110522760-
dc.identifier.eissn1861-1133en_US
dc.description.validate202203 bcfcen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberCEE-0548-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Universities; SPDST; MOE Key Laboratory of High-speed Railway Engineeringen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS54134339-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Zhang_Modelling_Mechanical_Behaviour.pdfPre-Published version1.89 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

115
Last Week
2
Last month
Citations as of Nov 9, 2025

Downloads

124
Citations as of Nov 9, 2025

SCOPUSTM   
Citations

45
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

46
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.