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Abstract: This study systematically presents the application of machine learning (ML) 

algorithms for constructing a constitutive model for soils. A genetic algorithm was integrated 

with ML algorithms to determine the global optimum model, and the k-fold cross-validation 

method was used to enhance the models’ robustness. The modelling performance of three 

typical ML algorithms with formulations explicitly expressed (i.e., back-propagation neural 

network [BPNN], extreme learning machine [ELM] and evolutionary polynomial regression 

[EPR]) were comprehensively compared. The effect of using the total or incremental stress–

strain strategy on the construction of ML-based soil models was investigated through synthetic 

and experimental data. All results indicate that a BPNN-based constitutive model using the 

incremental stress–strain strategy performs best in modelling the mechanical behaviour of soils 

in terms of interpolation and extrapolation abilities, followed by ELM and then EPR. 
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1. Introduction 

Experimental investigations show that the mechanical behaviour of soils is very 

complicated, involving elements such as state-dependence [50], contraction-dilation [51], 

anisotropy [66], destructuration [39, 68], stress-path dependence [20], time-dependence [69], 

and non-coaxiality [53]. Accurate description of such soil behaviours is vitally important in 

engineering practice [31, 43, 59, 80]. To describe such soil behaviours, numerous constitutive 

models have been developed during the past few decades. These models can be classified as 

(1) linear-elastic, (2) elastic perfectly plastic (such as the Mohr-Coulomb model), (3) nonlinear 

(such as the hardening soil [56] and nonlinear Mohr-Coulomb [26] models, (4) critical state–

based advanced (such as the modified cam-clay model [47], Nor-Sand model [23], CSAM 

model [76], Severn–Trent model [10], UH models [62-64], SANISAND model [52], 

SIMSAND model [24-26] and ANICREEP model [74]), hypoplasticity [34, 40, 57, 58] and (5) 

micromechanical models [4, 60, 70-73]. The last two categories are usually called advanced 

soil models [26, 74]. However, traditional soil models have three main disadvantages in 

modelling soil behaviours: (1) Most constitutive models are developed based on certain 

assumptions [65, 66, 69] (e.g., the associated or non-associated flow rule, non-coaxiality), (2) 

each model is suitable only for a specific type of soil or specific stress-paths and (3) although 

the mathematical formulas in a constitutive model are developed based on some theories (e.g., 

elastoplasticity theory) or derived from finite experimental data (e.g., the critical state line from 

triaxial tests), the formula’s form gives good accuracy for selected tests, but at the same time 

limits the model’s simulation ability for other stress paths. For example, the Modified Cam-
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Clay (MCC) was derived from the triaxial tests of saturated remoulded clay, and thus the MCC 

model is difficult to predict other kind of tests or other soils. In addition, the mathematical 

formulas become increasingly complicated when involving many parameters, resulting in 

difficulties of parameter identification and further limiting their engineering applications.  

Soil normally exhibits highly nonlinear characteristics. To simulate such characteristics, 

ML algorithms are very powerful and can thus be employed as an alternative way to construct 

data-driven constitutive models. ML algorithms have three following advantages in developing 

soil models: (1) ML algorithms can directly extract the stress–strain relationship from the 

experimental data without making any assumptions [8, 9, 11]. More stable and accurate results 

can be obtained by ML based models if the physical mechanism is implied in training data 

and/or incorporated into the training process; (2) ML algorithms have a strong ability to capture 

complicated non-linear relationships [1, 5, 16] and (3) the prediction accuracy of ML-based 

models can rise with the increase of experimental datasets. Numerous ML-based soil models 

have already been developed, and they can be categorized according to the model’s training 

strategy, whether (1) training models using the total values of stress and strain or (2) training 

models in incremental form [36]. Because ML algorithms can directly learn the stress–strain 

relationship from the experimental data, the increment-based training method might not be 

better at modelling the stress–strain under a simple path. However, up to now there is no 

comparative study to discuss which one is more suitable to develop ML based model for 

describing soil behaviours. Accordingly, the performance of two stress–strain strategies in 

developing ML-based constitutive models deserves investigation. 
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To construct an ML-based soil model, a large number of ML algorithms can be adopted, 

such as a back-propagation neural network (BPNN) [2, 15, 18, 44, 45, 55], evolutionary neural 

network (ENN) [30], recurrent neural network (RNN) [46, 81], support vector machines 

(SVMs) [33], evolutionary polynomial regression (EPR) [7, 22, 42] and genetic programming 

(GP) [3]. To find an ML algorithm that efficiently models soils’ stress–strain relationship, a 

performance comparison of different ML algorithms is needed. A comprehensive process for 

constructing ML-based models consists of the training, validation and testing phases. The 

validation phase is used to examine the robustness of trained ML models before evaluating 

model performance via the test set. However, existing ML-based soil constitutive models did 

not include the validation phase. The robustness of these ML models cannot be guaranteed. 

The testing phase in most ML-based soil constitutive models is the validation phase. 

Furthermore, the performance of an ML-based constitutive model is usually evaluated using 

testing data that belong to the same distribution as the training data (interpolation ability) but 

that are merely evaluated based on the unseen data (extrapolation ability). All these problems 

are worth investigating.  

This study aims to comprehensively demonstrate the process of constructing an ML-based 

constitutive model. To this end, three representative ML algorithms that can give explicit 

expression – BPNN, extreme learning machine (ELM) and EPR – were selected. The k-fold 

cross-validation method was employed in the validation phase to enhance the robustness of 

ML-based constitutive models. A genetic algorithm (GA) was used to optimize parameters for 

developing the global optimum model. A synthetic database based on a simple soil model was 
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first built. This model uses the real capabilities of BPNN, ELM and EPR to model soil 

behaviours for comparison, including interpolation and extrapolation abilities and the effects 

of the total and incremental stress–strain strategies. Finally, BPNN’s, ELM’s and EPR’s 

capacities for modelling soil behaviour are further examined using real test data for Kaolinite 

clay. 

2. Methodology of machine learning 

2.1 Back-propagation neural network 

A BPNN is a feedforward neural network characterized by propagation of errors from the 

output layer to find a set of weights and biases able to ensure that the output value of the 

network is identical to the actual output value [48]. A BPNN includes an input layer, any 

number of hidden layers and an output layer. The performance of BPNN is mainly affected by 

its framework, i.e. the number of hidden layers and hidden neurons. Based on a given 

framework, the purpose of other hyper-parameters such as activation function is to further 

improve the training efficiency or optimize the model. Considering that this study focuses on 

simulating mechanical behaviours of soils using ML algorithms, the deep investigation 

regarding the effect of each hyper-parameter on the model performance is not conducted. 

Herein, the optimum framework of BPNN based model is carefully investigated, whereas 

remaining hyper-parameters are set as the default value in Matlab toolbox. ,The hyper-

parameters of the BPNN are the number of hidden layers and hidden neurons, which affect the 

BPNN’s performance. Once the hyper-parameters are determined, weighting and bias values 

can be calculated by gradient descent or optimization algorithms. Figure 1(a) illustrates a 
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typical BPNN with one hidden layer. Taking the numbers of inputs and hidden and output 

neurons to be r, p and q, respectively, and assuming that there are n datasets in the training set, 

the output of the hidden and output layers can be expressed as 

 θf H WX  (1) 

 θg  oO VH  (2) 

where X = matrix of input variables (r×n); H = matrix of the hidden layer output (p×n); O = 

matrix of output variables (q×n); W, V = weights matrix on the connections between input and 

hidden neurons (p×r) and between hidden and output neurons (q×p), respectively; θ, θo = bias 

vectors on the connections between input and hidden neurons (p×1) and between hidden and 

output neurons (q×1), respectively; and f, g = activation functions in hidden and output layers, 

respectively, which are tansig and purlin in this study and can be formulated as follows:. The 

default activation functions in the hidden and output layers in the Matlab toolbox are tanh and 

purlin, respectively. Such two activation functions are used in this study, because tanh (see Eq. 

[3]) as the activation function for the hidden layer tends to show excellent performance in the 

shallow BPNN [6, 77, 78], and purlin (see Eq. [4]) is a activation function used in the output 

layer for regression problem.  

  2

2
tan : 1

1 x
sig f x

e
 


 (3) 

 :purlin g x x  (4) 

Note that the training set used in the BPNN has been normalized into an interval (–1, 1) 

using Eq. (5) because doing so can eliminate the effect of different magnitudes of input 
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variables on the model’s performance and can clearly reduce computational costs:  

 min
max min min

max min

norm

x x
x x x x

x x


  


 (5) 

where x = actual value of input variables, xmin = minimum value of input variables and xmax = 

maximum value of input variables. xmin = –1; xmax = 1. 

2.2 Extreme learning machine 

An ELM is a type of feedforward neural network characterized by a single hidden layer 

(see Fig. 1[b]). The hyper-parameters in the ELM equal the number of hidden neurons. The 

weights of the input layer and the biases of the hidden layer are assigned randomly, and the 

weights of the hidden layer (β) are determined analytically through a simple generalized 

inverse operation of the hidden layer output matrices [21], as shown in Eqs. (5)–(6), making 

the ELM’s learning speed thousands of times faster than seen in traditional feedforward 

networks: 

 θf H WX  (5) 

min β Hβ O  (6) 

where X = matrix of input variables (r×n), H = matrix of the hidden layer output (p×n), O = 

matrix of output variables (q×n), W = weights matrix on the connections between input and 

hidden neurons (p×r), θ = the bias vector of the connections between input and hidden neurons 

(p×1), β = the weight matrix connecting the hidden and the output layers (q×p) and f = the 

activation function in the hidden layer. For a fair comparison with BPNN, activation function 
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tanh is also used in ELM. – tansig in this study. As with the BPNN method, the training set 

used in the ELM also needs to be normalized into the interval (–1, 1) using Eq. (5). 

2.3 Evolutionary polynomial regression 

EPR is a genetic programming method characterized by the modelling of a system using a 

mathematical expression in the form of polynomial structures. Constructing an EPR-based 

model consists of two phases: (1) structure identification and (2) parameter estimation [13]. 

During the first phase, optimization algorithms such as the genetic algorithm and particle 

swarm optimization are used to search for symbolic structures – that is, to determine the 

exponent matrix. During the second phase, the parameters’ values are estimated by solving a 

least squares (LS) linear problem. Compared with BPNN and ELM, the training set in the EPR 

does not require normalization. A typical EPR expression can be formulated as 

   0

1

y , ,
m

j j

j

F f a a


  X X  (7) 

where y = predicted output, X = matrix of input variables, F = a function constructed by the 

process, fj (X) = jth transformed variable, aj = an adjustable parameter for the jth term and a0 = 

an optional bias. fj (X) is determined by the optimization algorithm, and aj and a0 are determined 

by the LS. 

The EPR’s key objective is to identify the number of transformed variables and a 

combination of vectors of independent input variables. Herein, the transformed variable is 

obtained via 

       1

1x x x
j j i j k

j i kf 
ES ES ES

X
， ， ，  (8) 
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where xi = ith input variable, k = a total number of input variables and ESm×k = exponent matrix. 

2.4 Genetic algorithm 

A genetic algorithm (GA) is a meta-heuristic optimization algorithm inspired by natural 

evolution [19]. It has been extensively employed in geotechnical engineering for tasks such as 

identification constitutive models’ parameters [24, 26, 67, 75], model selection [25], slope [37, 

54], embankment [14, 41], tunnelling [35, 38], pile foundation [27, 29] and excavation [28]. In 

this study, the GA was selected to optimize weights and biases in BPNN and ELM algorithms 

and to search for symbolic structures in the EPR algorithm. In GA, a population of individuals 

is first generated. A chromosome based on a coding scheme (real-coded GA) is then employed 

to represent each individual. After calculating the fitness value of each individual, the best 

individual having the lowest fitness value in the population is selected and then evolves through 

crossover and mutation operations to generate a new population. The process continues until it 

satisfies the termination criterion – that is, whether it reaches the maximum generation. 

Meanwhile, the fitness value converges at a constant value. 

2.5 K-fold cross-validation 

Three phases are involved in the integrated process of constructing an ML model: training, 

validation and testing. The validation phase seeks to improve the robustness of the training 

model and avoid overfitting. Currently, the k-fold cross-validation (CV) method is widely used 

to validate models [49]. In this method, the original training set is randomly divided into k sub-

datasets. Herein, k–1 sub-datasets, which form a new sub-training set, are employed to train 
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models, and the performance of the trained model is validated by the remaining sub-dataset. 

Each sample in the training set thus has an opportunity to train and validate models. Because 

[32] demonstrated that Kk tends to be set at 10, the ten-fold CV method was used in this study.  

At each round, the ML model with a fixed set of hyper-parameters was trained ten times 

based on nine sub-training sets, andthereafter the performance of this ML model was evaluated 

by the mean value of the sum of squared errors (MSSE) for the remaining sub-dataset. Such 

process eliminates the effect of allocation of training and testing sets on the model performance. 

Meanwhile the model performance evaluated by the increasing k validation subsets instead of 

only one validation set can prevent overfitting problem [79]. It is defined asTherefore, the 

fitness function in the GA, which can be expressed as 

 
2

1

m

i ii
y y

Fitness
k







 (9) 

where yi = predicted output, yi = actual output, m = the number of datasets in the remaining 

sub-dataset and k = the number of CV sets. 

2.6 Evaluation indicators 

Two commonly used evaluation indicators – mean absolute error (MAE) and mean 

absolute percentage error (MAPE) – were used to evaluate the performance of ML models in 

this study. The combination of MAE and MAPE helps overcome the deficiencies of both, so 

that both are used extensively to evaluate model performance [5, 61]. Low values of these two 

indicators indicate that a model has excellent performance. The expression of MAE and MAPE 

can be obtained by 
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1

1 n

i i

i

MAE r p
n 

   (10) 

1

1
100%

n
i i

i i

r p
MAPE

n r


   (11) 

where r = actual output value, p = predicted output value and n = the total number of datasets.  

2.7 Model framework 

Figure 2(a) presents the flowchart for constructing a ML-based constitutive model. This 

type of data-driven model starts from the collection of datasets with which to form a database. 

In the ML domain, 80% (for training the model) and 20% (for testing the model) is a widely 

acknowledged scheme for data separation ratio in the community. Such separation ratio can 

ensure the ML based model being well trained and tested, which has been theoretically proved 

[12]. Of the data,Therefore, 80 % are used to train the model and 20 % are used to test it in this 

study. The total or incremental stress–strain strategy is selected beforehand; thereafter, the 

corresponding features or input variables can be determined. At the next step, the ten-fold 

cross-validation method is used to divide the training set into ten subsets for training and 

validating models. At each round, GA is employed to identify the general parameters of ML 

algorithms. The hyper-parameters are determined by trial and error, with the corresponding 

hyper-parameters of the model that generates the lowest fitness value regarded as the optimal 

hyper-parameter. After determining three optimal constitutive models based on BPNN, ELM 

and EPR, their performance is compared using the test set.  

Figures 2(b) and 2(c) illustrate the schematic view of the total and incremental stress–
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strain strategy, respectively. In the total stress–strain strategy, the stress in the ith step is affected 

only by the strain at the ith step and by the physical parameters (see Eq. [12]). In the incremental 

stress–strain strategy, the stress in the ith step is affected by the strain, the stress at the (i–1)th 

step, the strain increment at the ith step and the physical parameters (see Eq. [13)]): 

 X,i if   (12) 

 1 1X, , ,i i i if       (13) 

where X = [x1, x2,…, xr], the vector of independent variables; σi, σi-1 = stress at the ith and (i–

1)th steps; εi, εi–1 = strain at the ith and (i–1)th steps; Δεi = axial strain increment at the ith step; 

and f = formulation of stress–strain relationship, as determined by the ML algorithms in this 

study. 

It should be noted that in the incremental stress–strain strategy, the predicted stress at the 

ith step needs to update the input stress variable in real time to predict the stress at the (i+1)th 

step. In addition, the strain ε at the (i+1)th step is updated by the following: 

1= +i i i     (14) 

To eliminate the effect of scales of parameters on the model performance and improve 

convergence, all datasets need to be preprocessed. Considering the distribution of parameters 

used in this study is different, thereby Minmax normalization method instead of standardization 

method is used in this study, as presented in Eq. [15]. 

 min
max min min

max min

norm

x x
x x x x

x x


  


 (15) 
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where x = actual value of input variables, xmin = minimum value of input variables and xmax = 

maximum value of input variables. xmin = –1; xmax = 1. 

3 ML–based constitutive models using synthetic data 

3.1 Synthetic data by a simple soil model 

To comprehensively compare the performance of three ML algorithms and two modelling 

strategies when on developing constitutive models, a simple sand shear constitutive model was 

first used to generate synthetic datasets in this study (see Eq. [16]). The three purpose of ML-

based constitutive models developed based onwere compared using synthetic datasets a 

theoretical function rather than directly based on the experimental data is to eliminate the 

interference of experimental and measurement errors related to on the mapping capability of 

ML algorithms. Moreover, the experimental data tend to be limited and insufficient for 

comparison of ML algorithms’ performance, whereas the data can be generated infinitely by a 

theoretical function. 

0
1/

n
G


 





 (16) 

where σn0 = vertical stress; τ = shear stress; γ = shear strain; G = shear modulus, 1000 kPa in 

this study; and μ = friction angle, tan(π/6) in this study. 

A total of fourteen curves were generated to develop ML-based constitutive models. 

Herein, the axial strain γ ranges from 0 % to 10 %, and a fixed set of axial strain increment Δγ, 

including 0.01 %, 0.05 %, 0.1 %, 0.15 % and 0.2 %, was chosen consistently for ten curves. 

Each curve consists of 91 data points. Nine curves (σn0 = 25, 50, 100, 200, 250, 300, 400, 500 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

14 

 

and 600 kPa) with a total of 819 data points were employed to train the ML-based constitutive 

models, and the remaining five curves (σn0 = 15, 150, 350, 650 and 700 kPa) were used to test 

the models. 

According to the stress–strain strategy, as mentioned in Eqs. (13)–(14), the vector X of 

independent variables in this soil model is σn0. As a result, the total and incremental stress–

strain strategies have two and four input variables, respectively. Both have an output variable. 

The corresponding total and incremental stress–strain strategy can be written as 

 0 ,i i

nf    (17) 

 1 1

0 , , ,i i i i

nf        (18) 

where the definitions of τ, γ and Δγ are similar to those of σ, ε and Δε in Eqs. (13)–(14). 

3.2 Determination of parameters in ML algorithms 

The parameters to be determined in the ML algorithms include hyper-parameters and 

general parameters. Table 2 presents the hyper-parameters in the BPNN, ELM and EPR models. 

The trial-and-error method was employed in this study to determine the optimal hyper-

parameter of ML algorithms. A single-layer BPNN was used to construct constitutive models 

in this study, there being only several input variables. A single hidden layer is sufficient to 

capture the stress–strain relationship. Table 3 summarizes several methods of determining the 

optimal number of hidden neurons. The optimal number of hidden neurons ranged from one to 

five in the total stress–strain strategy and from one to ten in the incremental stress–strain 

strategy. Because there is no method for determining the optimal number of transformed terms 
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in the ELM and EPR, the ranges of hidden neurons and transformed terms in these two 

algorithms increase continuously until the number of hidden neurons and transformed terms 

cannot improve the model’s performance. In this way the ranges of hyper-parameters in three 

ML algorithms can be determined, as Table 2 shows.  

In addition to the hyper-parameters, the weights and biases in the BPNN and ELM as well 

as the exponent matrix in the EPR were determined using the optimization algorithm GA in 

this study, guaranteeing that a global optimum constitutive model can be obtained. Note that 

the values of exponents must be non-negative in the EPR algorithm, because the datasets 

include the initial stress–strain stage (0, 0); indeed, negative exponents are wrong in this 

condition. The values of exponents were thus limited to [0, 1, 2, 3]. Table 4 presents the 

parameter values in the GA. Note that BPNN and EPR are set to a maximum of 500 generations, 

whereas for the ELM, because of its different convergence rate, the figure is 5000.  

3.3 Results of the validation set 

The training model seeks to determine the optimal hyper-parameters in each ML algorithm, 

and the model’s performance with a fixed set of hyper-parameters is evaluated by the ten CV 

sets. The hyper-parameters of an ML-based constitutive model that produces the lowest 

convergent fitness value are optimal. Figure 3 presents the evolution of fitness value generated 

by three types of ML-based constitutive models using the total stress–strain strategy. It can be 

clearly observed that the convergence rates of BPNN and EPR are much faster than that of 

ELM. The fitness value roughly holds steady when the generation exceeds 350 and 200 in 

BPNN and EPR, respectively, whereas the fitness value remains roughly constant when the 
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generation reaches 4000 in ELM. From the perspective of the convergent fitness value, as 

shown in Figure 3, the optimal numbers of hidden neurons in BPNN and ELM are four and 

eight, respectively, and the optimal number of transformed terms in EPR is eleven.  

The evolution of fitness value generated by three ML algorithms using the incremental 

stress–strain strategy is shown in Figure 4. Overall, the convergence rate of the three types of 

ML-based constitutive models using the incremental stress–strain strategy is faster than when 

using the total stress–strain strategy. The fitness value roughly holds steady when the 

generation reaches 250, 1000 and 100 in the BPNN, ELM and EPR, respectively. From the 

perspective of the convergent fitness value, as shown in Figure 4, the optimal numbers of 

hidden neurons in BPNN and ELM are four and ten, respectively, and the optimal number of 

transformed terms in EPR is eleven. Note that the optimal fitness values are much less than 

those yielded using the total stress–strain strategy.  

3.4 Results of the training set 

The optimal hyper-parameters of the three ML algorithms using two stress–strain strategies 

are determined as heretofore mentioned. Accordingly, three optimal ML-based constitutive 

models of each stress–strain strategy are constructed based on the training set. Figure 5 presents 

the predicted stress–strain curves using three optimally trained models on the basis of the total 

stress–strain strategy, compared with the measured curves. It is clear that the predicted results 

of BPNN show perfect agreement with the measured curves, whereas the results predicted by 

ELM and EPR deviate from the measured curves. In particular, the prediction error for the 

ELM- and EPR-based constitutive models is much greater at the initial stage (0, 0), and these 
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models also yield a large degree of error at the early stage of stress–strain curves, attributable 

to the principles of these two algorithms as described in section 3.3. 

Figure 6 presents the predicted stress–strain curves using three optimally trained models 

based on the incremental stress–strain strategy, compared with the measured curves. It can be 

seen that all three models can accurately capture the stress–strain curves, which indicates that 

the incremental stress–strain strategy for simulating stress–strain relationship shows a 

significant improvement.  

3.5 Results of the test set 

During the last phase, the performance of ML-based constitutive models is evaluated 

against the test set, with σn0 in the training set ranging from 50 to 600 kPa. Generally, test 

datasets are taken from within the range of training datasets, so that test sets with σn0 = 150 and 

350 kPa are taken into consideration. To investigate the ability of ML-based constitutive 

models to extrapolate beyond the range of training datasets, test sets for which σn0 = 15, 650 

and 700 kPa are also conducted in this study. Table 5 summarizes the values of indicators for 

these five test sets. For the interpolated test sets, Figure 7 presents the results of simulation 

using three optimal ML-based constitutive models based on the total stress–strain strategy. The 

predicted stress–strain curve using BPNN largely agrees with the measured curve, and the 

corresponding MAE and MAPE values are also lower than those produced by ELM and EPR. 

Notably, ELM and EPR cannot accurately predict initial stress when strain equals zero, and 

ELM- and EPR-based constitutive models cannot accurately predict the evolution of stress with 

increases in strain. Figure 8 presents the results of simulation using three optimal ML models 
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based on the incremental stress–strain strategy for the test set. The predicted stress–strain 

curves using the BPNN-based constitutive model still agree perfectly with the measured curves 

and outperform the ELM- and EPR-based constitutive models. The performance of the ELM-

based constitutive model is clearly better than that of the total stress–strain strategy, and it also 

accurately captures the evolution of stress. Nevertheless, the change in the performance of 

EPR-based constitutive model is different from others, perfectly predicting the stress–strain 

relationship for σn0 = 350 but exhibiting worse performance at predicting the stress–strain 

relationship for σn0 = 150. Note that prediction performance at the initial stage of ELM- and 

EPR-based constitutive models is clearly improved from that seen with the total stress–strain 

strategy. Overall, ML-based constitutive models that use the incremental stress–strain strategy 

offer reliable performance for interpolated test sets, and a BPNN-based constitutive model 

exhibits the best performance. 

For tThe extrapolated test sets are used to further examine the generalization ability of 

ML algorithms themselves. Figure 9 presents the results of simulation using three optimal ML-

based constitutive models based on the total stress–strain strategy. For σn0 = 650 and 700 kPa, 

three ML-based constitutive models can still capture the stress–strain relationship. The BPNN-

based constitutive model performs perfectly, followed by the EPR and ELM-based constitutive 

models. However, for σn0 = 15 kPa, the predicted stress–strain curve by the BPNN-based 

constitutive model deviates from the actual stress–strain curve. The results of simulation using 

three optimal ML-based constitutive models based on the incremental stress–strain strategy are 

shown in Figure 10. In addition to stress–strain curves for σn0 = 650 and 700 kPa, it can be 
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observed that the BPNN-based constitutive model’s ability to predict the stress–strain 

relationship for σn0 = 15 kPa improves significantly. Meanwhile, the performance of the ELM-

based constitutive model improves dramatically with lower MAE and MAPE values, whereas 

the prediction performance of EPR-based constitutive model decreases. 

Overall, ML-based constitutive models are better at predicting stress–strain relationships 

within the range of the training datasets than at extrapolating beyond the range of the training 

datasets. ML-based constitutive models developed using the incremental stress–strain strategy 

outperform those developed using the total stress–strain strategy. A BPNN-based constitutive 

model developed using the incremental stress–strain strategy is thus recommended for 

describing the stress–strain relationship, because this model makes highly accurate predictions 

capturing the stress–strain relationship for the interpolated and extrapolated test sets. 

4. ML–based constitutive models using real data 

4.1 Database 

To investigate ML-based constitutive models’ ability to predict soil behaviour in 

engineering practice, this study uses datasets from twelve sets of triaxial compression shear 

tests conducted by [17] on Kaolinite clays having various over-consolidation ratios (OCRs). 

The results of shear and void ratio behaviour are collected as shown in Figure 11. Herein, 

datasets from nine tests having OCRs of 1, 2, 2.25, 2.5, 2.7, 4, 5, 10 and 20 are used to train 

the model, and the remaining three, with OCRs of 3, 8 and 50 kPa, are used to test it. 
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4.2 Selection of a simulation strategy 

According to previous comparisons, a BPNN algorithm that integrates the incremental 

stress–strain strategy is used to model Kaolinite clays’ behaviour, including that related to 

deviatoric stress and void ratio. According to the incremental stress–strain strategy seen in Eq. 

(14), the vector X of independent variables is the OCR, and there are two output variables: 

deviatoric stress q and void ratio e. Accordingly, ML-based Kaolin clays’ constitutive models 

can be obtained by 

 1 1 1 1

1 1, , , ,i i i i i iq f p q e        (19) 

 1 1 1 1

1 1, , , ,i i i i i ie g p q e        (20) 

where p i–1, q i–1, ei-1, ε
i-1  

1 = mean stress, deviatoric stress, void ratio and axial strain at the (i–

1)th steps, respectively; q i, ei, Δε
i 

1= deviatoric stress, void ratio and axial strain increment at 

the ith step, respectively; and f, g = formulations of deviatoric stress–strain and void ratio–

strain relationships.  

Figure 12 presents the framework of BPNN-based constitutive models for predicting 

Kaolinite clay behaviour. Note that the predicted deviatoric stress and void ratio at the ith step 

must update the deviatoric stress and void ratio in real time to predict deviator stress and 

volumetric strain at the (i+1)th step. Updates to strain ε at the (i+1)th step follow Eq. (15). After 

training, formulations of BPNN-based Kaolinite constitutive models are found and 

summarized in Appendix. 
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4.3 Results of simulation 

Validation results of these simulations with which to determine the optimal parameters of 

BPNN-based Kaolinite constitutive models are not presented, but Appendix A presents the 

formulation of optimal BPNN-based Kaolinite clay constitutive models in detail. It can be 

observed that the optimal number of hidden neurons in BPNN is eight. Figure 13 presents the 

results of the training set predicted by the optimal BPNN model, compared with the measured 

results, showing that BPNN-based constitutive model can accurately capture non-linear 

deviatoric stress–strain and void ratio–strain relationships.  

Figure 14 presents the results of the predicted deviatoric stress–strain and void ratio–strain 

relationships for the interpolated test set. Because this study uses the recursive simulation 

strategy, prediction error accumulates gradually with increases in strain. The accumulated error 

is negligible up to strain of 20 % for simulation of the deviatoric stress–strain relationship. By 

contrast, the predicted void ratio–strain curve gradually deviates from the accrual curve when 

strain exceeds 10 %. Overall, the BPNN-based constitutive model better simulates the 

deviatoric stress–strain relationship, likely because the void ratio–strain relationship is more 

complicated than the deviatoric stress–strain relationship. Figure 14 shows that deviatoric 

stress increases monotonically with strain for all experimental tests, whereas the void ratio–

strain relationship differs for different OCR values because of the dilatant behaviour associated 

with high OCR and the contractive behaviour associated with low.  

Figure 15 presents the predicted deviatoric stress–strain and void ratio–strain relationships 

for the extrapolated test set. Absent actual experimental results for OCR = 22.5, 25, 27.5 and 
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30, the reasonability of predicted curves is referred from the results for OCR = 20 and 50. For 

OCR = 50, a predicted deviatoric stress–strain curve using the BPNN-based constitutive model 

agrees well with the actual curve, although no experimental data are available in the training 

set beyond OCR = 20. Predicted curves for OCR = 22.5, 25, 27.5 and 30 also suggest 

reasonable trends (with deviatoric stress increasing monotonically with increases in strain and 

peak deviatoric stress increasing with decreases in OCR), with all results falling into the range 

OCR = 20 and OCR = 50. However, the BPNN-based constitutive model’s predicted void ratio–

strain curves obviously deviate from the actual curves when strain exceeds 5 %. The reason 

prediction of the void ratio–strain relationship is less accurate than prediction of the deviatoric 

stress–strain relationship has already been stated, but overall, BPNN-based constitutive models 

do well (in terms of both interpolation and extrapolation) at simulating actual soil behaviour so 

long as datasets are sufficient. What’s more, the ability to obtain simple, explicit function can 

further extend the application of the BPNN-based constitutive model. 

4.4 Comparison of different ML based models 

To further compare the performance of BPNN for modelling soil behaviours with ELM 

and EPR, the latter two ML algorithms are also used to predict the behaviours of Kaolinite 

clays. It should be noted that the training, testing datasets and also the modelling framework 

for ELM and EPR are consistent with that used in BPNN. Herein, the optimum number of 

hidden neurons in ELM based model is identified as 7, and the optimum transformed terms in 

EPR based model is identified as 8. For brevity, the process for determining the hyper-

parameters of ELM and EPR are not presented in detail.  
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The predicted stress-strain relationships on the testing datasets using the optimum ELM 

based model are presented in Fig. 16. It can be seen from Figs. 16(a) and (b) that the predicted 

results on the interpolated datasets show a good agreement with experimental results. In Figs. 

16(c) and (d), the strain softening and volumetric contraction are obviously observed from the 

predicted results on extrapolated datasets, which severely violates the measured results. Such 

factors indicate the ELM based model can well describe the known soil behaviours, but may 

be not suitable to predict the soil behaviours on the unseen datasets. Fig. 17 presents the 

predicted stress-strain relationships on the testing datasets using the optimum EPR based model. 

Similar to the results presented in Section 3, the predicted error on both interpolated and 

extrapolated datasets are larger than that generated by BPNN and ELM based models. It 

indicates the generalization ability of EPR is inferior to the neural networks based algorithms; 

thereby it has difficulty in modelling complicated soil behaviours. Overall, the generalization 

ability of BPNN is excellent and it can be used to simulate soil behaviours on both known and 

unknown datasets.  

It should be noted that ML based model is a kind of data-driven model, thereby its 

application scope can be expanded as the type and information of datasets increase. For 

example, if the database involves data under unloading and different stress paths, the ML based 

model can be well trained and used to simulate soil behaviours under such conditions. 

Otherwise, more effective physical mechanism needs to be added to refine the ML based model. 

Future work will focus on such issues. 
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5. Conclusions  

Determination of soil constitutive models is vitally important to engineering practice. ML 

algorithms have been used to model soil behaviour, because ML-based constitutive models are 

free of assumptions and offer strong non-linear mapping capabilities. This study systematically 

demonstrated the application of ML algorithms for construction of a soil constitutive model, 

using three commonly employed ML algorithms able to present an explicit formulation – 

BPNN, ELM and EPR – to develop models and comprehensively comparing their modelling 

performance.  

A database based on a simple sand shear constitutive model was first built to reflect the 

three ML algorithms’ ability to model soil behaviour, with the intent of eliminating potential 

interference from noise-corrupted experimental data. Although the ML algorithm can learn 

directly from data, an incremental stress–strain strategy able to take loading path into 

consideration was more suitable than the total stress–strain strategy for constructing ML-based 

constitutive models. ML-based models’ hyper-parameters can be determined through trial and 

error, and the genetic algorithm should identify general hypermeters for developing the global 

optimum model. The application of k-fold cross validation can enhance the robustness of ML-

based models, facilitating the application of these ML-based models to engineering practice.  

Simulation results for theoretical and experimental data indicated that BPNN-based 

constitutive models are more stable and accurate, including for interpolation and extrapolation 

when modelling soil behaviour, than the ELM- and EPR-based constitutive models. Notably, 

the BPNN-based constitutive model’s predictions of deviatoric stress–strain and void ratio–
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strain relationships for Kaolinite clay largely agreed with actual experimental data.  

Overall, ML-based constitutive models can directly capture non-linear soil behaviour 

based on limited experimental data without making any assumptions; what’s more, an explicit 

formulation for the constitutive model can be determined that guarantees application of ML-

based constitutive models in numerical analysis and engineering practice. Meanwhile, the 

model’s performance and scope of application will increase as the database expands, producing 

more accurate predictions than are to be had from traditional constitutive models. 
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Appendix A. Formulations of BPNN-based Kaolinite constitutive models 

 θf H WX  (1A) 

 oθg O VH  (2A) 

where, X = [p, q, e, ε1, Δε1], matrix of input variables; H = matrix of the hidden layer output; 

O = [q, e], matrix of output variables; f = tansig formulation; g = purlin formulation. Herein,  

1.35315  1.907756  0.915302 2.02378 2.16087

2.595596 0.32869 2.48042 2.352501  2.32131

1.36652  0.169634  3.622397 2.44086 3.21463

0.72626 0.01880 0.22374 0.908566   1.41438

0.02852  0.0137

  

  

  

  



W

43  0.634650  0.57525 0.11921

0.13418  0.036866  0.933846  1.36281  1.07577

0.19825 0.51040 6.04189 2.26296 1.74243

0.19073  0.055012  1.177738  0.69086 2.03872

 
 
 
 
 
 
  
 
   
     
 
    

 

 θ 2.077058;  0.827601;  0.480095;  0.95727;  0.88088;  1.21919;  0.862033;  2.24696    

0.1350   0.04501 2.23939 1.11558 1.894278 1.86286 2.12292  1.08516

0.065208 0.02499 0.12495  0.603675  0.853076 0.0923   0.06472 0.63716

      
  

     
V  

 oθ 0.31;  0.113215  
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Table 

 

Table 1. Previous research works for identifying constitutive models of geomaterials 

Strategy Machine 

learning 

algorithm 

Validation  

method 

Methods to  

determine  

architecture 

References 

Total  

stress-strain 

BPNN No Trial & error He and Li (2009) 

BPNN No Trial & error Rashidian and Hassanlourad (2014) 

BPNN No Trial & error Kohestani (2016) 

SVM No Trial & error Kohestani (2016) 

GP No Optimization Cabalar and Cevik (2011) 

Incremental 

stress-strain 

BPNN No Trial & error Ellis et al. (1995) 

BPNN No Trial & error Penumadu and Zhao (1999) 

BPNN No Optimization Basheer (2000) 

BPNN No Trial & error Habibagahi and Bamdad (2003) 

BPNN No Trial & error Turk et al. (2001) 

ENN No Trial & error Johari et al. (2011) 

RNN No Trial & error Zhu et al. (1998) 

RNN No Optimization Romo et al. (2001) 

EPR No Optimization Javadi and Rezania (2009) 

EPR No Optimization Faramarzi et al. (2012) 

EPR No Optimization Nassr et al. (2018) 

 

 

 

 

 

 

Table 2. Hyper-parameters in three selected ML algorithms 

Algorithm Hyper-parameters Description Range (T/I) 

BPNN l_hidden layers Number of hidden layers 1/1 

 n_neurons Number of neurons in hidden layers 1–5/1–9 

ELM n_neurons Number of neurons in hidden layers 1–11/1–11 

EPR z_transformed term Number of transformed variables 1–11/1–11 

Note: T = total stress-strain strategy; I = incremental stress-strain strategy. 
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Table 3. Methods for determining the number of hidden neurons 

Methods References Number of hidden neurons (T/I) 

2 1iN   Nielsen (1987) 5/9 

 22+ +0.5 + 3

+

oi o o i

o i

N N N N N

N N

    Paola (1994) 1/1 

2 / 3iN  Wang (1994) 2/3 

i oN N  Masters (1994) 2/2 

2 iN  Kaastra and Boyd 

(1996) 
4/8 

Note: Ni = number of input variables; No = number of output variables; T = total stress-strain strategy; I = 

incremental stress-strain strategy. 

 

 

 

 

Table 4. Values of parameters in the GA algorithm 

Algorithm pcross pmutation Population Generation 

GA 0.7 0.1 20 500/5000 

Note: 500 = maximum generation for the BPNN and EPR; 5000 = maximum generation for the ELM. 

 

 

 

 

 

Table 5. Values of indicators for the test set 

Strategy Algorithm 

Interpolation (σn0, kPa) Extrapolation (σn0, kPa) 

MAE MAPE MAE MAPE 

150 350 150 350 15 650 700 15 650 700 

T 

BPNN 0.58 1.36 1.22 1.02 1.95 2.84 3.35 28.81 1.13 1.21 

ELM 9.42 22.58 18.88 20.63 8.88 34.16 41.34 142.46 19.60 19.64 

EPR 6.28 14.66 14.06 14.06 0.63 27.23 29.32 14.06 14.06 14.06 

I 

BPNN 2.07 3.69 4.17 2.97 0.88 5.02 8.03 12.79 2.45 3.13 

ELM 4.44 5.46 9.05 4.09 6.96 15.36 18.88 151.64 7.92 9.31 

EPR 26.95 10.25 33.25 6.33 23.90 56.08 49.59 290.27 17.98 18.06 

Note: T = total stress-strain strategy; I = incremental stress-strain strategy. 
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Figure captions 

Fig. 1 Schematic view of ML algorithms: (a) BPNN; (b) ELM 

Fig. 2 Model framework: (a) flowchart of constructing ML-based constitutive models; (b) 

schematic view of the total stress-strain strategy; (c) schematic view of the incremental 

stress-strain strategy 

Fig. 3 Evolution of fitness value using the total stress-strain strategy for: (a) BPNN; (b) ELM; 

(c) EPR 

Fig. 4 Evolution of fitness value using the incremental stress-strain strategy for: (a) BPNN; (b) 

ELM; (c) EPR 

Fig. 5 Predicted results on the training set using the total stress-strain strategy for: (a) BPNN; 

(b) ELM; (c) EPR 

Fig. 6 Predicted results on the training set using the incremental stress-strain strategy for: (a) 

BPNN; (b) ELM; (c) EPR 

Fig. 7 Predicted results on the test set (interpolation) using the total stress-strain strategy: (a) 

BPNN; (b) ELM; (c) EPR 

Fig. 8 Predicted results on the test set (interpolation) using the incremental stress-strain strategy: 

(a) BPNN; (b) ELM; (c) EPR 

Fig. 9 Predicted results on the test set (extrapolation) using the total stress-strain strategy: (a) 

BPNN; (b) ELM; (c) EPR 

Fig. 10 Predicted results on the test set (extrapolation) using the incremental stress-strain 

strategy: (a) BPNN; (b) ELM; (c) EPR 

Fig. 11 Experimental data of Kaolinite clay 

Fig. 12 Framework for predicting Kaolinite clay behaviours 

Fig. 13 Predicted results on the training set using BPNN-based constitutive model with 

incremental stress-strain strategy: (a) q–ε1; (b) e–ε1 

Fig. 14 Predicted results on the test set (interpolation) using BPNN based on the incremental 

stress-strain strategy: (a) q–ε1; (b) e–ε1 

Fig. 15 Predicted results on the test set (extrapolation) using BPNN based on the incremental 

stress-strain strategy: (a) q–ε1; (b) e–ε1 

Fig. 16 Predicted results on the test set using ELM based on the incremental stress-strain 

strategy: (a) q–ε1 (interpolation); (b) e–ε1 (interpolation); (c) q–ε1 (extrapolation); (d) e–

ε1 (extrapolation) 

Fig. 17 Predicted results on the test set using EPR based on the incremental stress-strain 

strategy: (a) q–ε1 (interpolation); (b) e–ε1 (interpolation); (c) q–ε1 (extrapolation); (d) e–

ε1 (extrapolation)  
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Fig. 1 
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Fig. 2 
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Fig. 3 
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Fig. 12 
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Fig. 13 
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