Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/97444
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Civil and Environmental Engineeringen_US
dc.creatorZhang, LHen_US
dc.creatorLai, SKen_US
dc.creatorWang, Cen_US
dc.creatorYang, Jen_US
dc.date.accessioned2023-03-06T01:18:33Z-
dc.date.available2023-03-06T01:18:33Z-
dc.identifier.issn0263-8223en_US
dc.identifier.urihttp://hdl.handle.net/10397/97444-
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.rights© 2020 Elsevier Ltd. All rights reserved.en_US
dc.rights© 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.en_US
dc.rightsThe following publication Zhang, L. H., Lai, S. K., Wang, C., & Yang, J. (2021). DSC regularized Dirac-delta method for dynamic analysis of FG graphene platelet-reinforced porous beams on elastic foundation under a moving load. Composite Structures, 255, 112865 is available at https://doi.org/10.1016/j.compstruct.2020.112865.en_US
dc.subjectDSC regularized Dirac-delta methoden_US
dc.subjectFunctionally graded porous beamsen_US
dc.subjectGraphene-platelet reinforcementen_US
dc.subjectMoving loadsen_US
dc.subjectWinkler–Pasternak foundationen_US
dc.titleDSC regularized Dirac-delta method for dynamic analysis of FG graphene platelet-reinforced porous beams on elastic foundation under a moving loaden_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume255en_US
dc.identifier.doi10.1016/j.compstruct.2020.112865en_US
dcterms.abstractThis work presents a novel computational approach, the DSC regularized Dirac-delta method, for the vibration analysis of functionally graded graphene-platelet reinforced (FG-GPLR) porous beams resting on a Winkler–Pasternak elastic foundation under a moving load. Based on the Timoshenko beam theory, the energy functional of the beam model is represented by a newly constructed basis function and is minimized under the variational principle. To account for the properties of composite materials, the Halpin–Tsai model is used to predict the elastic modulus of graphene-reinforced composites. A coupling of the DSC regularized Dirac-delta method and the Newmark–β integration scheme is then adopted for solving the dynamic problem. The DSC-based approach exhibits controllable accuracy for approximations and shows excellent flexibility in handling time-dependent moving load problems, because the equally spaced grid system used in the DSC numerical approach can achieve a preferable representation of moving load sources. An intensive parametric study is provided with a particular focus on the influence of moving loads, foundation supports and material properties (e.g., weight fraction, porosity distribution, dispersion pattern and geometry size of graphene reinforcements). First-known solutions reported in tabular and graphical forms should be useful for researchers and engineers in designing such beam problems.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationComposite structures, 1 Jan. 2021, v. 255, 112865en_US
dcterms.isPartOfComposite structuresen_US
dcterms.issued2021-01-01-
dc.identifier.scopus2-s2.0-85091623513-
dc.identifier.eissn1879-1085en_US
dc.identifier.artn112865en_US
dc.description.validate202203 bcfcen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberCEE-0482-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextInnovation and Technology Commission of the HKSAR Government to the Hong Kong Branch of National Rail Transit Electrification and Automation Engineering Technology Research Center; Hong Kong Polytechnic Universityen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS30121425-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Zhang_Dsc_Regularized_Dirac-Delta.pdfPre-Published version1.83 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

132
Last Week
2
Last month
Citations as of Nov 9, 2025

Downloads

294
Citations as of Nov 9, 2025

SCOPUSTM   
Citations

62
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

61
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.