Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/95713
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Physicsen_US
dc.creatorWong, HFen_US
dc.creatorNg, SMen_US
dc.creatorLiu, YKen_US
dc.creatorLam, KKen_US
dc.creatorChan, KHen_US
dc.creatorCheng, WFen_US
dc.creatorvon Nordheim, Den_US
dc.creatorMak, CLen_US
dc.creatorPloss, Ben_US
dc.creatorLeung, CWen_US
dc.date.accessioned2022-10-05T03:55:32Z-
dc.date.available2022-10-05T03:55:32Z-
dc.identifier.issn0018-9464en_US
dc.identifier.urihttp://hdl.handle.net/10397/95713-
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineersen_US
dc.rights© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.en_US
dc.rightsThe following publication H. F. Wong et al., "Gate-Controlled Transport Properties in Dilute Magnetic Semiconductor (Zn, Mn)O Thin Films," in IEEE Transactions on Magnetics, vol. 54, no. 11, pp. 1-4, Nov. 2018, Art no. 4200104 is available at https://doi.org/10.1109/TMAG.2018.2850067en_US
dc.subjectDilute magnetic semiconductor (DMS) and magnetismen_US
dc.subjectElectric effecten_US
dc.subjectMn-doped ZnO (MZO)en_US
dc.titleGate-controlled transport properties in dilute magnetic semiconductor (Zn, Mn)O thin filmsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume54en_US
dc.identifier.issue11en_US
dc.identifier.doi10.1109/TMAG.2018.2850067en_US
dcterms.abstractIonic liquid (IL) gating of functional oxides has drawn significant attention, since it can provide reversible changes in carrier concentration (1014 cm-2) at the interface, permitting the manipulation of electrical and magnetic properties of oxide films with low voltages. In this paper, we demonstrated the electric-field manipulation of transport properties in the dilute magnetic semiconductor of Zn0.98Mn0.02O (MZO), using an electric-double-layer transistor geometry through the IL electrolyte gating. The MZO layer exhibited reversible control of resistance up to 33% at 230 K. Moreover, magnetoresistance (MR) measurements revealed the influence of applied gate voltage (Vg) on the magnetotransport behavior, which exhibited a positive MR in the low-field region and a negative MR in high magnetic field (up to 9 T). An increase in low-field positive MR (<1 T) upon switching Vg from-2 to 2 V implied an enhanced ferromagnetic state of MZO due to an increased electron carrier concentration. The results demonstrated that a controllable carrier concentration by electric-field effect played an important role in the manipulation of magnetism in MZO.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationIEEE transactions on magnetics, Nov. 2018, v. 54, no. 11, 4200104en_US
dcterms.isPartOfIEEE transactions on magneticsen_US
dcterms.issued2018-11-
dc.identifier.scopus2-s2.0-85050393499-
dc.identifier.eissn1941-0069en_US
dc.identifier.artn4200104en_US
dc.description.validate202210 bcfcen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberAP-0428-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThe Hong Kong Polytechnic Universityen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS24266179-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Wong_Gate-Controlled_Transport_Properties.pdfPre-Published version278.01 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

56
Last Week
0
Last month
Citations as of Oct 13, 2024

Downloads

38
Citations as of Oct 13, 2024

SCOPUSTM   
Citations

1
Citations as of Oct 17, 2024

WEB OF SCIENCETM
Citations

1
Citations as of Oct 10, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.