Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/95710
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Physicsen_US
dc.creatorZhao, XWen_US
dc.creatorWong, HFen_US
dc.creatorLiu, YKen_US
dc.creatorNg, SMen_US
dc.creatorLiang, JMen_US
dc.creatorLam, KKen_US
dc.creatorCheng, WFen_US
dc.creatorMak, CLen_US
dc.creatorLeung, CWen_US
dc.date.accessioned2022-10-05T03:55:31Z-
dc.date.available2022-10-05T03:55:31Z-
dc.identifier.issn0018-9464en_US
dc.identifier.urihttp://hdl.handle.net/10397/95710-
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineersen_US
dc.rights© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.en_US
dc.rightsThe following publication X. W. Zhao et al., "Modulating Antiferromagnetic La0.35Sr0.65 MnO3 via Low-Voltage Pulsing Across a Ferroelectric Copolymer Gate Dielectric," in IEEE Transactions on Magnetics, vol. 58, no. 2, pp. 1-5, Feb. 2022, Art no. 4200205 is available at https://doi.org/10.1109/TMAG.2021.3085364en_US
dc.subjectAntiferromagnetic La0.35Sr0.65MnO3(AF-LSMO) thin filmen_US
dc.subjectAntiferromagnetismen_US
dc.subjectFerroelectric copolymeren_US
dc.subjectLow-voltage pulsesen_US
dc.titleModulating antiferromagnetic La₀.₃₅Sr₀.₆₅ MnO₃ via low-voltage pulsing across a ferroelectric copolymer gate dielectricen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume58en_US
dc.identifier.issue2en_US
dc.identifier.doi10.1109/TMAG.2021.3085364en_US
dcterms.abstractElectric-field-based modulation is a promising way for realizing ultrafast and high-density antiferromagnetic spintronics. Here, we investigate a low-voltage pulse modulation of antiferromagnetic La1-xSrxMnO₃ ( x =0.65 ) (AF-LSMO) thin films. Positive voltage pulses can increase the resistance at low temperatures, which is ascribed to the oxygen vacancies induced by positive voltage pulses. This effect is supported by X-ray photoelectron spectroscopy (XPS) results. Using low-voltage pulses, we demonstrate exchange bias modulation in ferromagnetic La₀.₇Sr₀.₃MnO₃ (FM-LSMO)/AF-LSMO bilayer structure. Temperature-dependent resistance, exchange bias field and coercivity all show voltage-polarity dependence. While positive pulses can induce significant changes in the AF-LSMO, negative pulsing has little impact and is consistent with oxygen vacancy related process observed in various electrochemical reaction systems. Our findings can find potential for exploring electric-field modification of antiferromagnetic spintronics.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationIEEE transactions on magnetics, Feb. 2022, v. 58, no. 2, 4200205en_US
dcterms.isPartOfIEEE transactions on magneticsen_US
dcterms.issued2022-02-
dc.identifier.scopus2-s2.0-85107352814-
dc.identifier.eissn1941-0069en_US
dc.identifier.artn4200205en_US
dc.description.validate202210 bcfcen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberAP-0091-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThe Hong Kong Polytechnic Universityen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS54311776-
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Wong_Modulating_Antiferromagnetic_Low-Voltage.pdfPre-Published version570.45 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

72
Last Week
0
Last month
Citations as of Sep 22, 2024

Downloads

50
Citations as of Sep 22, 2024

SCOPUSTM   
Citations

1
Citations as of Sep 26, 2024

WEB OF SCIENCETM
Citations

1
Citations as of Sep 26, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.