Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/95656
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorWu, Sen_US
dc.creatorZhou, Zen_US
dc.date.accessioned2022-09-27T02:46:33Z-
dc.date.available2022-09-27T02:46:33Z-
dc.identifier.issn1064-8275en_US
dc.identifier.urihttp://hdl.handle.net/10397/95656-
dc.language.isoenen_US
dc.publisherSociety for Industrial and Applied Mathematicsen_US
dc.rights© 2021 Society for Industrial and Applied Mathematicsen_US
dc.rightsThe following publication Wu, S., & Zhou, Z. (2021). A parallel-in-time algorithm for high-order BDF methods for diffusion and subdiffusion equations. SIAM Journal on Scientific Computing, 43(6), A3627-A3656 is available at https://doi.org/10.1137/20M1355690.en_US
dc.subjectParabolic equationen_US
dc.subjectSubdiffusion equationen_US
dc.subjectBackward differentiation formulaen_US
dc.subjectParallel-in-time algorithmen_US
dc.subjectConvergence analysisen_US
dc.subjectConvolution quadratureen_US
dc.titleA parallel-in-time algorithm for high-order BDF methods for diffusion and subdiffusion equationsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spageA3627en_US
dc.identifier.epageA3656en_US
dc.identifier.volume43en_US
dc.identifier.issue6en_US
dc.identifier.doi10.1137/20M1355690en_US
dcterms.abstractIn this paper, we propose a parallel-in-time algorithm for approximately solving parabolic equations. In particular, we apply the k-step backward differentiation formula and then develop an iterative solver by using the waveform relaxation technique. Each resulting iteration represents a periodic-like system, which could be further solved in parallel by using the diagonalization technique. The convergence of the waveform relaxation iteration is theoretically examined by using the generating function method. The argument could be further applied to the time-fractional subdiffusion equation, whose discretization shares common properties of the standard BDF methods due to the nonlocality of the fractional differential operator. Illustrative numerical results are presented to complement the theoretical analysis.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationSIAM journal on scientific computing, 2021, v. 43, no. 6, p. A3627-A3656en_US
dcterms.isPartOfSIAM journal on scientific computingen_US
dcterms.issued2021-
dc.identifier.ros2021004173-
dc.identifier.eissn1095-7197en_US
dc.description.validate202209 bchyen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberCDCF_2021-2022-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Natural Science Foundation of China; Peking Universityen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS69554781-
dc.description.oaCategoryVoR alloweden_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Wu_Parallel-in-Time_Algorithm_High-Order.pdf580.39 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

126
Last Week
0
Last month
Citations as of Nov 10, 2025

Downloads

198
Citations as of Nov 10, 2025

SCOPUSTM   
Citations

6
Citations as of Jun 21, 2024

WEB OF SCIENCETM
Citations

12
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.