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A PARALLEL-IN-TIME ALGORITHM FOR HIGH-ORDER BDF
METHODS FOR DIFFUSION AND SUBDIFFUSION EQUATIONS\ast 
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Abstract. In this paper, we propose a parallel-in-time algorithm for approximately solving
parabolic equations. In particular, we apply the k-step backward differentiation formula and then
develop an iterative solver by using the waveform relaxation technique. Each resulting iteration rep-
resents a periodic-like system, which could be further solved in parallel by using the diagonalization
technique. The convergence of the waveform relaxation iteration is theoretically examined by using
the generating function method. The argument could be further applied to the time-fractional sub-
diffusion equation, whose discretization shares common properties of the standard BDF methods due
to the nonlocality of the fractional differential operator. Illustrative numerical results are presented
to complement the theoretical analysis.
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1. Introduction. The aim of this paper is to develop a parallel-in-time (PinT)
solver for high-order time stepping schemes of diffusion models. We begin with the
normal diffusion, which is described by parabolic equations. Let V \subset H = H \prime \subset V \prime 

be a Gelfand triple of complex Hilbert spaces. Namely, the embedding V \lhook \rightarrow H is
continuous and dense, and

\langle u, v\rangle = (u, v) for all u \in H \lhook \rightarrow V \prime and v \in V \lhook \rightarrow H,

where \langle \cdot , \cdot \rangle is the duality pairing between V \prime and V , and (\cdot , \cdot ) is the inner product
on H. Throughout, we let \| \cdot \| and \| \cdot \| V denote the norms of the space H and V ,
respectively.

Let T > 0, v \in H, f \in L2(0, T ;V \prime ), and consider the initial value problem of
seeking u \in L2(0, T ;V ) \cap H1(0, T ;V \prime ) \lhook \rightarrow C([0, T ];H) such that

(1.1)

\Biggl\{ 
\partial tu(t) +Au(t) = f(t) for all t \in (0, T ],

u(0) = v,

where A : V \rightarrow V \prime is a linear, self-adjoint, positive definite operator with a compact
inverse. Meanwhile, we assume the following elliptic property:

(1.2) \beta 0\| u\| 2V \leq \langle Au, u\rangle \leq \beta 1\| u\| 2V for all u \in V,
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A3628 SHUONAN WU AND ZHI ZHOU

with constants \beta 1 > \beta 0 > 0. For example, if we consider a heat equation on a bounded
Lipschitz domain \Omega \subset \BbbR d and A denotes negative Laplacian  - \Delta with homogeneous
Dirichlet boundary conditions, then H = L2(\Omega ) and V = H1

0 (\Omega ).
In recent years, the development and analysis of parallel algorithms for solving

evolution problems have attracted a lot of attention. The first group of parallel
schemes is based on the inverse Laplace transform which represents the solution as
a contour integral in the complex plane, as well as a carefully designed quadrature
rule [36, 48, 55, 60]. Such a method is directly parallelizable and accurate even for
nonsmooth problem data. However, this strategy is not directly applicable for the
nonlinear problem or anomalous diffusion problems with time-dependent diffusion
coefficients. To the second group belongs the widely used parareal algorithm [4,
13, 15, 45, 62], which could be derived as a multigrid-in-time method or a multiple
shooting method in the time direction. See also the space-time multigrid method
[22, 24, 42, 61, 58]. We refer the interested reader to the survey papers [11, 53] and
references therein.

Very recently, in [16], Gander and Wu developed a novel PinT algorithm by
applying the waveform relaxation [49, 51] and a diagonalization technique [44, 14, 18].
In particular, they proposed a simple iteration: for given um - 1(T ) \in H, look for um
such that

(1.3)

\Biggl\{ 
\partial tum(t) +Aum(t) = f(t) for all t \in (0, T ],

um(0) = v + \kappa (um  - um - 1)(T ).

Here \kappa denotes a relaxation parameter. Note that the exact solution u is a fixed point
of the iteration (1.3). It was proved in [16, Theorem 3.1] that by selecting a proper \kappa \in 
(0, 1), the iteration (1.3) converges with the convergence factor \kappa e - cT /(1 - \kappa e - cT ),
with a constant c depending on the smallest eigenvalue of A.

Then a direct discretization of (1.3) by the backward Euler method immediately
results in a periodic-like discrete system, and therefore the diagonalization technique
is applicable here to carry out a direct parallel computation. The diagonalization
technique was first proposed by Maday and R{\e}nquist for solving evolution models [44].
The basic idea is to reformulate the time stepping system into a space-time all-at-once
system, then diagonalize the time stepping matrix and solve all time steps in parallel.
The computational cost of each iteration is proved to be O([MN log(N)+\widetilde MfN ]/p) for
each processor, where M,N are the number of degrees of freedom in space and time,
respectively, \widetilde Mf is the computational cost for solving a Poisson-like problem obtained
by diagonalization, and p is the number of used processors. In particular, Gander and
Wu considered single-step \theta -methods for solving (1.3) with uniform step size [16,
section 3.2]. The convergence analysis of the discrete system was also established,
where the proof is similar to the argument for the continuous problem.

With \varepsilon being the desired error tolerance, a kth-order time stepping scheme re-
quires N = O(\varepsilon  - 1/k) time steps. Therefore, the computational complexity for each

processor turns out to be O([(\widetilde Mf + M | log(\varepsilon )| /k)\varepsilon  - 1/k]/p). Besides, the roundoff
error of the algorithm is proved to be O(\epsilon \kappa  - 2N2) = O(\epsilon \kappa  - 2\varepsilon  - 2/k), where \epsilon is the
machine precision; see more details in section 3.2. Those facts motivate us to develop
and analyze PinT schemes for (1.1) by using some high-order time stepping schemes,
such as the k-step backward differentiation formula (BDFk) with k = 2, 3, . . . , 6, and
the aforementioned waveform relaxation technique. This is beyond the scope of all
existing references [12, 16], which only focus on \theta -methods, and represents the main
theoretical achievements of the work.
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PARALLEL-IN-TIME BDF SCHEMES A3629

Instead of directly discretizing (1.3), we start with the time stepping schemes of
(1.1) using BDFk with uniform step size \tau = T/N . Then, by perturbing the discrete
problem, we obtain a periodic-like system in each iteration, which can be solved par-
allelly by using O([MN log(N)+ \widetilde MfN ]/p) operations (for each processor). We prove
that the resulting iteration linearly converges to the exact solution (with a proper
choice of the relaxation parameter \kappa ) by using the generating function technique as
well as the decay property of the discrete solution operator. Specifically, let Unm be
the solution of the mth iteration of the perturbed iterative system with the initial
guess Un0 = v for all 0 \leq n \leq N , and let u be the exact solution to (1.1). Provided
certain data regularity exists, we show the error estimate for all 1 \leq n \leq N (Theorem
2.7):

\| Unm  - u(tn)\| \leq c(\gamma (\kappa )m + \tau kt - kn ), with \kappa \in (0, 1) independent of \tau ,

where the positive constant c and the convergence factor (2.18)

\gamma (\kappa ) =
c\kappa e - c1T

1 - c\kappa e - c1T
\in (0, 1)

might depend on k, \kappa , \beta 0, T , v, and f , but it is independent of \tau , n, m, and u.
Therefore, to attain the discretization error O(\tau k) or O(N - k), the computational

complexity for each processor is O(log(N)[MN log(N) + \widetilde MfN ]/p).
The above argument could be extended to the subdiffusion model, which involves

a time-fractional derivative of order \alpha \in (0, 1). Let T > 0, v \in H, f \in Lp(0, T ;V \prime )
with p \in (2/\alpha ,\infty ), and consider the initial value problem of seeking u \in Lp(0, T ;V )\cap 
H\alpha (0, T ;V \prime ) such that

(1.4)

\Biggl\{ 
\partial \alpha t u(t) +Au(t) = f(t) for all t \in (0, T ],

u(0) = v.

Here \partial \alpha t u denotes the left-sided Caputo fractional derivative of order \alpha , defined by

(1.5) \partial \alpha t u(t) :=
1

\Gamma (1 - \alpha )

\int t

0

(t - s) - \alpha u\prime (s) ds.

Interest in (1.4) is motivated by its excellent capability of modeling anomalously
slow diffusion, such as protein diffusion within cells [19], thermal diffusion in media
with fractal geometry [52], and contaminant transport in groundwater [34], to name
but a few. The literature on the numerical approximation for the subdiffusion equation
(1.4) is vast. The most popular methods include convolution quadrature [5, 8, 10, 28,
31], the collocation-type method [67, 56, 38, 35], the discontinuous Galerkin method
[46, 50, 47], and the spectral method [7, 25, 66]; see [29] for an overview of existing
schemes. See also [3, 27, 39, 17, 63] for some fast algorithms.

Our argument for linear multistep schemes could be easily applied to many pop-
ular time stepping schemes for the subdiffusion problem (1.4). As an example, we
consider the convolution quadrature generated by the BDFk method, which was es-
tablished by Lubich's series of works [40, 41]. Note that the fractional derivative is
nonlocal-in-time, and hence its discretization inherits the nonlocality and behaves like
a multistep discretization with an infinitely wide stencil. By perturbing the time step-
ping scheme, we develop an iterative algorithm that requires a periodic-like system
to be solved in each iteration, which could be parallelly solved by a diagonalization
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A3630 SHUONAN WU AND ZHI ZHOU

technique with O([MN log(N) + \widetilde MfN ]/p) operations for each processor. Moreover,
error estimates of the resulting numerical schemes are established by using the decay
property of the (discrete) solution operator. We prove the following error estimate
(Theorem 3.7):

\| UNm  - u(tN )\| \leq c(\gamma (\kappa )m + \tau kt - kn ), with \kappa = O(1/ log(N)),

where Unm is the solution to the iterative algorithm (3.10) with the initial guess Un0 = v
for all 0 \leq n \leq N , and u is the exact solution to the subdiffusion problem (1.4). In
the estimate, the positive constant c and the convergence factor

\gamma (\kappa ) =
c\kappa log(N)

1 - c\kappa log(N)
\in (0, 1)

might depend on \alpha , k, \kappa , \beta 0, T , v, and f , but they are always independent of \tau , n,
m, and u. The analysis is promising for some nonlinear evolution equations as well
as (sub)diffusion problems involving time-dependent diffusion coefficients. See a very
recent work of Gu and Wu [21] for a parallel algorithm by using the diagonalization
technique, where the analysis only works for BDF2 with \alpha < 5/8.

The rest of the paper is organized as follows. In section 2, we develop a high-order
time parallel scheme for solving the parabolic problem and analyze its convergence by
generating function technique. In section 3, we extend our discussion to the nonlocal-
in-time subdiffusion problem. Finally, in section 4, we present some numerical results
to illustrate and complement the theoretical analysis.

2. Parallel algorithms for normal diffusion equations. The aim of this
section is to propose high-order multistep PinT schemes, with rigorous convergence
analysis, for approximately solving the parabolic equation (1.1).

2.1. BDF\bfitk scheme for normal diffusion equations. We consider the BDFk
scheme, k = 1, 2, . . . , 6, with uniform step size. Let \{ tn = \tau n\} be a uniform partition
of the interval [0, T ], with a time step size \tau = T/N . For n \geq 1, the k-step BDF
scheme seeks Un \in V such that [37]

(2.1)
\=\partial \tau U

n +AUn = f(tn) + a(k)n (f(0) - Av) +

k - 2\sum 
\ell =1

b
(k)
\ell ,n\tau 

\ell \partial \ell tf(0) =: \=fn,

U - (k - 1) = \cdot \cdot \cdot = U - 1 = U0 = v.

In (2.1) we use the BDFk to approximate the first-order derivative by

\=\partial tU
n :=

1

\tau 

k\sum 
j=0

\omega jU
n - j ,

where constants \{ \omega j\} are coefficients of the polynomials

\delta k(\zeta ) :=

k\sum 
\ell =1

1

\ell 
(1 - \zeta )\ell =

k\sum 
j=0

\omega j\zeta 
j .(2.2)

For \alpha = 1, the BDFk scheme is known to be A(\vargamma k)-stable with angle \vargamma k = 90\circ , 90\circ ,
86.03\circ , 73.35\circ , 51.84\circ , 17.84\circ for k = 1, 2, 3, 4, 5, 6, respectively [23, p. 251].
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PARALLEL-IN-TIME BDF SCHEMES A3631

To apply the BDFk for parabolic problem, it is well known that one needs starting
data U j = u(tj)+O(\tau k) for 0 \leq j \leq k - 1. Then the error bound of the time stepping
scheme is O(\tau k). However, for nonlocal-in-time subdiffusion models (which will be
discussed in section 3), the knowledge of U j for 0 \leq j \leq k  - 1 does not guarantee an
error bound O(\tau k). It is due to the lack of compatibility of problem data. Fortunately,
in the preceding work of the second author and his colleagues, it was proved that one
can recover the optimal error bound O(\tau k) by modifying the starting k  - 1 steps
[31]. The strategy also works for the BDFk for classical parabolic equations [37]. In
order to keep consistency with numerical schemes for subdiffusion models, we decide
to apply the modified formulation (2.1) of the BDFk.

Table 1
The coefficients a

(k)
n and b

(k)
\ell ,n.

k a
(k)
1 a

(k)
2 a

(k)
3 a

(k)
4 a

(k)
5 \ell b

(k)
\ell ,1 b

(k)
\ell ,2 b

(k)
\ell ,3 b

(k)
\ell ,4 b

(k)
\ell ,5

k = 2 1
2

k = 3 11
12

 - 5
12

\ell = 1 1
12

0

k = 4 31
24

 - 7
6

3
8

\ell = 1 1
6

 - 1
12

0

\ell = 2 0 0 0

k = 5 1181
720

 - 177
80

341
240

 - 251
720

\ell = 1 59
240

 - 29
120

19
240

0

\ell = 2 1
240

 - 1
240

0 0

\ell = 3 1
720

0 0 0

k = 6 2837
1440

 - 2543
720

17
5

 - 1201
720

95
288

\ell = 1 77
240

 - 7
15

73
240

 - 3
40

0

\ell = 2 1
96

 - 1
60

1
160

0 0

\ell = 3  - 1
360

1
720

0 0 0

\ell = 4 0 0 0 0 0

The next lemma provides some properties of the generating function. The proof
has been provided in [31, Theorem A.1] and hence is omitted here.

Lemma 2.1. For any \varepsilon , there exists \theta \varepsilon \in (\pi /2, \pi ) such that for any \theta \in (\pi /2, \theta \varepsilon ),

there holds \delta k(e
 - z) \in \Sigma \pi  - \vargamma k+\varepsilon for any z \in \Gamma 

\pi / sin \theta 
\theta = \{ z = re\pm i\theta , 0 \leq r \leq \pi / sin \theta \} ,

where \Sigma \psi := \{ z \in \BbbC : | arg(z)| \leq \psi \} . Meanwhile, there exist positive constants c0
and c\prime 0 such that

c0| z| \leq | \delta k(e - z)| \leq c\prime 0| z| for all z \in \Gamma 
\pi / sin \theta 
\theta .

For n \geq k, we choose a
(k)
n and b

(k)
\ell ,n to be zero. Then \=\partial \tau u(tn) is the standard

approximation of \partial tu(tn) by BDFk. For 1 \leq n \leq k  - 1, these constants have been
determined in [31, 37]; cf. Table 1. In particular, if

(2.3) v \in H and f \in W k,1(0, T ;H) \cap Ck - 1([0, T ];H),

the numerical solution to (2.1) satisfies the following error estimate. We omit the
proof here and refer interested readers to [37, Theorem 1.1] and [31, Theorem 2.1]
for error analysis of (non-self-adjoint) parabolic systems and fractional subdiffusion
equations, respectively.
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A3632 SHUONAN WU AND ZHI ZHOU

Lemma 2.2. Assume that the problem data v and f satisfy (2.3). Then

(2.4) \| Un  - u(tn)\| \leq c \tau k
\biggl( 
t - kn \| v\| +

k - 1\sum 
\ell =0

t\ell  - k+1
n \| \partial \ell tf(0)\| +

\int tn

0

\| \partial ks f(s)\| ds
\biggr) 
,

where the constant c is independent of \tau and n.

2.2. Development of parallel-in-time algorithm. Next, we develop a PinT
algorithm for (2.1): for given Unm - 1, N  - k + 1 \leq n \leq N , we compute Unm by

(2.5)
\=\partial \tau U

n
m +AUnm = \=fn, n = 1, 2, . . . , N,

U - j
m = v + \kappa (UN - j

m  - UN - j
m - 1 ), j = 0, 1, . . . , k  - 1,

where the revised source term \=fn is given in (2.1). Note that the exact time stepping
solution \{ Un\} Nn=1 is a fixed point of this iteration. In section 2.4, we provide a
systematic framework to study the iterative algorithm (2.5), which also works for the
time-fractional subdiffusion problem discussed later.

We may rewrite the BDFk scheme (2.5) in the following matrix form:

(2.6)
1

\tau 
(Bk(\kappa )\otimes Ix)Um + (It \otimes A)Um = Fm - 1,

where Um = (U1
m, U

2
m, . . . , U

N
m )T , Fm - 1 = (F1, F2, . . . , FN )T with

(2.7) Fn := \=fn +
\kappa 

\tau 

n\sum 
j=1

\omega jU
N - j+1
m - 1 +

1

\tau 

n - 1\sum 
j=0

\omega jv,

and

Bk(\kappa ) =

\left[                

\omega 0 \cdot \cdot \cdot 0 \kappa \omega k \cdot \cdot \cdot \kappa \omega 2 \kappa \omega 1

\omega 1 \omega 0 0 \kappa \omega k \cdot \cdot \cdot \kappa \omega 2

...
...

. . .
...

...
...

. . . 0 \kappa \omega k
\omega k \omega k - 1 \cdot \cdot \cdot 0

0 \omega k \omega k - 1 \cdot \cdot \cdot 
...

. . .
. . .

...
0 \omega k \cdot \cdot \cdot \omega 1 \omega 0

\right]                
.

Here, we recall that \omega j = 0 if j > k and
\sum k
j=0 \omega j = 0 for the normal diffusion

equations. The following lemma is crucial for the design of PinT algorithm.

Lemma 2.3 (diagonalization). Let \Lambda (\kappa ) = diag(1, \kappa  - 
1
N , . . . , \kappa  - 

N - 1
N ). Then

Bk(\kappa ) = \Lambda (\kappa ) \~Bk(\kappa )\Lambda (\kappa )
 - 1,
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PARALLEL-IN-TIME BDF SCHEMES A3633

where the circular matrix \~Bk(\kappa ) has the form

\~Bk(\kappa ) =

\left[                

\omega 0 0 \kappa 
k
N \omega k \cdot \cdot \cdot \kappa 

2
N \omega 2 \kappa 

1
N \omega 1

\kappa 
1
N \omega 1 \omega 0 0 \kappa 

k
N \omega k \cdot \cdot \cdot \kappa 

2
N \omega 2

...
...

. . .
...

...
...

. . . 0 \kappa 
k
N \omega k

\kappa 
k
N \omega k \kappa 

k - 1
N \omega k - 1 \cdot \cdot \cdot 0

0 \kappa 
k
N \omega k \kappa 

k - 1
N \omega k - 1 \cdot \cdot \cdot 

. . .
. . .

...

0 \kappa 
k
N \omega k \cdot \cdot \cdot \kappa 

1
N \omega 1 \omega 0

\right]                
.

As a consequence, Bk(\kappa ) can be diagonalized by

Bk(\kappa ) = S(\kappa )Dk(\kappa )S(\kappa )
 - 1, S(\kappa ) := \Lambda (\kappa )V,

where the Fourier matrix

(2.8) V = [v1, v2, . . . , vN ], with vn =
\bigl[ 
1, ei

2(n - 1)\pi 
N , . . . , ei

2(n - 1)(N - 1)\pi 
N

\bigr] T
,

and Dk(k) is a diagonal matrix.

Using the above lemma, we can solve the system (2.5) in a parallel-in-time manner.

Algorithm 2.1 PinT algorithm by diagonalization technique for diffusion equation.

1: Solve (S(\kappa )\otimes Ix)H = Fm - 1.
2: Solve (Dk(\kappa )\otimes Ix + \tau It \otimes A)Q = \tau H.
3: Solve (S(\kappa ) - 1 \otimes Ix)Um = Q.

It is known that the circulant matrix can be diagonalized by the FFT with
\scrO (N logN) operations [20, Chapter 4.7.7]. Then in each iteration, it turns out to
be N independent Poisson-like equations, which can be efficiently solved by, for in-
stance, the multigrid method.

Speedup analysis of Algorithm 2.1. Let Mf be the total real floating point op-
erations for solving the (elliptic) Poisson-like equations. Then the cost for the serial
computation is O(MfN). It is known that with (optimal) multigrid method Mf is
proportional to M , the number of degrees of freedom in space.

Consider the parallelization of Algorithm 2.1 with p processors. Steps 1 and 3
can be finished with total computational cost O([MN log(N)]/p) by using the bulk
synchronous parallel FFT algorithm [26]; see also [16, section 4.1] for the detailed
analysis. We note here that the F in (2.7) needs to be updated via Um - 1, whose
computational cost is O(M) since \omega j = 0 when j > k. The PinT algorithm of F will
be more delicate for the time-fractional subdiffusion problem discussed later.

For step 2, the total computational cost is O((\widetilde MfN)/p), where \widetilde Mf denotes to-
tal real floating point operations for solving the Poisson-like equations obtained by
diagonalization, and hence the cost for the parallel computation is O([MN log(N) +\widetilde MfN ]/p). In the case p = O(N), then the parallel computational cost reduces to

O(M log(N) + \widetilde Mf ). In some cases, \widetilde Mf could be (almost) linear to M even in higher
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A3634 SHUONAN WU AND ZHI ZHOU

dimensions. For example, if we consider the heat equation with periodic boundary
conditions, we can apply the FFT to solve the Poisson-like equations with computa-
tional complexity \widetilde Mf = O(M logM).

With \varepsilon being the desired error tolerance, a kth-order time stepping scheme re-
quires N = O(\varepsilon  - 1/k) time steps. Then, in order to attain sufficient accuracy O(\varepsilon ), the
number of iterations should be O(logN), because the convergence factor \gamma (\kappa ) \in (0, 1)
is independent of N (cf. Theorem 2.7). Therefore, the total computational cost is

O([MN(logN)2 + \widetilde MfN logN ]/p).

Remark 2.1. The proposed algorithm uses the FFT to diagonalize over time. It
transforms the parabolic PDE into a decoupled set of elliptic PDEs. Such a technique
is quite common for solving time-periodic problems, but relatively new for solving
initial value problems.

In this paper, we only discuss the parallelism in the time direction. Nevertheless,
combining the proposed method with some parallel-in-space algorithms, one may obtain
an algorithm with polylog parallel complexity if O(MN) processors were available. For
example, for parabolic equations with periodic boundary conditions, one may apply the
FFT to transform the parabolic PDE into a decoupled set of ODEs:

u\prime j(t) + \lambda juj(t) = fj(t), with uj(0) = vj ,

where 1 \leq j \leq M and M denotes the number of degrees of freedom in space. Then
these decoupled ODEs could be efficiently solved by using the PinT algorithm proposed
in this paper.

Roundoff error of Algorithm 2.1. Let Um be the exact solution of (2.6), and let\widehat Um be the solution of Algorithm 2.1. We assume that step 2 of Algorithm 2.1 is
solved in a direct manner (for example, the LU factorization). Then, for simplicity,
we consider an arbitrary eigenvalue of the matrix A and analyze the relative roundoff
error. To this end, we replace matrices Ix and A by scalars 1 and \mu . Then the system
(2.6) reduces to

BUm = F, with B =
1

\tau 
Bk(\kappa ) + \mu It.

Then by Lemma 2.3 we define

D = S(\kappa ) - 1BS(\kappa ), and hence D =
1

\tau 
Dk(\kappa ) + \mu It.

Note that to solveBUm = F by diagonalization is equivalent to solving (B+\delta B)\widehat Um =
F with some perturbation \delta B, which can be easily bounded by [16, p. 496]

\| \delta B\| 2 \leq \epsilon (2N + 1)\| S(\kappa )\| 2\| S(\kappa ) - 1\| 2\| D\| 2 +O(\epsilon 2),

where \epsilon denotes the machine precision (\epsilon = 2.2204 \times 10 - 16 for a 32-bit computer).
Then the roundoff error satisfies

\| Um  - \widehat Um\| 2
\| Um\| 2

\leq cond2(B)
\| \delta B\| 2
\| B\| 2

\leq \epsilon (2N + 1)\| S(\kappa )\| 2\| S(\kappa ) - 1\| 2\| D\| 2\| B - 1\| 2

\leq \epsilon (2N + 1) cond2(S(\kappa ))
2 cond2(D).

Here we note that for \kappa \in (0, 1]

\| S(\kappa )\| 2 \leq \| \Lambda (\kappa )\| 2\| V \| 2 \leq \kappa  - 
N - 1
N

\surd 
N

D
ow

nl
oa

de
d 

09
/2

5/
22

 to
 1

58
.1

32
.1

61
.6

8 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

PARALLEL-IN-TIME BDF SCHEMES A3635

and

\| S(\kappa ) - 1\| 2 \leq \| \Lambda (\kappa ) - 1\| 2\| V  - 1\| 2 \leq 1\surd 
N
.

Therefore, we arrive at

cond2(S(\kappa )) = \| S(\kappa )\| 2\| S(\kappa ) - 1\| 2 \leq \kappa  - 
N - 1
N \leq \kappa  - 1.

For the diagonal matrix D

\| D - 1\| 2 = max
1\leq n\leq N

\bigm| \bigm| \bigm| 1
\tau 
\delta k(\kappa 

1
N e - i

2(n - 1)\pi 
N ) + \mu 

\bigm| \bigm| \bigm|  - 1

\leq (sin \theta k\mu )
 - 1.

Here we apply A(\theta k) stability of the BDFk scheme with \theta k \in (0, \pi /2). Similarly, using
the definition of generating function (2.2), we derive for any \kappa \in (0, 1) and N > 1

\| D\| 2 = max
1\leq n\leq N

\bigm| \bigm| \bigm| 1
\tau 
\delta k(\kappa 

1
N e - i

2(n - 1)\pi 
N ) + \mu 

\bigm| \bigm| \bigm| \leq 1

\tau 
\delta k( - \kappa 

1
N ) + \mu \leq 1

\tau 
\delta k( - \kappa 

1
N ) + \mu .(2.9)

Hence, we obtain

cond2(D) \leq 
\Bigl( \delta k( - 1)

\tau 
+ \mu 

\Bigr) 
(\mu sin \theta k)

 - 1.

As a result, we have for \mu \in [\mu 0,\infty ) (where the positive number \mu 0 depends on \beta 0 in
(1.2))

(2.10)
\| Um  - \widehat Um\| 2

\| Um\| 2
\leq \epsilon (2N + 1)\kappa  - 2

\Bigl( \delta k( - 1)

\tau 
+ \mu 

\Bigr) 
(\mu sin \theta k)

 - 1 \leq Ck\epsilon \kappa 
 - 2N2,

where the constant Ck can be written as

Ck = 3
\Bigl( 
1 +

\Bigl[ \delta k( - 1)

T

\Bigr] 
/\mu 0

\Bigr) 
(sin \theta k)

 - 1.

It only depends on the order of the BDF method and \beta 0 in (1.2). Note that the
bound of roundoff error is uniform for \mu \rightarrow \infty , and therefore it holds for all self-
adjoint operators A satisfying (1.2).

Remark 2.2. The above analysis shows a reasonable estimate that the roundoff
error is O(\epsilon \kappa  - 2N2). See a similar estimate for some A-stable single-step methods like
the backward Euler scheme or Crank--Nicolson scheme [16]. The difference is that the
BDFk scheme (with k > 2) is no longer A-stable. In our numerical experiments, we
indeed observe that the roundoff error increases as N \rightarrow \infty .

2.3. Representation of numerical solution. The aim of this section is to de-
velop the representation of the numerical solution of the k-step BDF schemes through
a contour integral in the complex domain, and to establish decaying properties of the
solution operators.

By letting Wn = Un  - v, we can reformulate the time stepping scheme (2.1) as

(2.11)
\=\partial \tau W

n +AWn =  - Av + \=fn, n = 1, 2, . . . , N,

W - (k - 1) = \cdot \cdot \cdot =W - 1 =W 0 = 0.
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A3636 SHUONAN WU AND ZHI ZHOU

By multiplying \xi n on (2.11) and taking summation over n (we extend n in (2.11) to
infinity in the sense that \=fn = 0 with n \geq N), we have

\infty \sum 
n=1

\xi n \=\partial tW
n +

\infty \sum 
n=1

\xi nAWn =  - 
\infty \sum 
n=1

\xi nAv + \=fn\xi 
n.

For any given sequence \{ V n\} \infty n=0, let
\widetilde V (\xi ) :=

\sum \infty 
n=0 V

n\xi n denote its generating func-
tion. Since W - (k - 1) = \cdot \cdot \cdot = W - 1 = W 0 = 0, according to properties of discrete
convolution, we have the identity

\infty \sum 
n=1

\xi n \=\partial \tau Vn =
\delta k(\xi )

\tau 
\widetilde V (\xi ),

where \delta k(\xi ) denotes the generating function of the k-step BDF method (2.2). There-
fore we conclude that\Bigl( \delta k(\xi )

\tau 
+A

\Bigr) \widetilde W (\xi ) =  - 
\Bigl( \xi 

1 - \xi 

\Bigr) 
Av +\widetilde \=fn(\xi ),

which implies that

\widetilde W (\xi ) =
\Bigl( \delta k(\xi )

\tau 
+A

\Bigr)  - 1\Bigl[ 
 - 
\Bigl( \xi 

1 - \xi 

\Bigr) 
Av +\widetilde \=fn(\xi )\Bigr] .

It is easy to see that \widetilde W (\xi ) is analytic with respect to \xi in the circle | \xi | = \rho , for
\rho > 0 small, on the complex plane; then with Cauchy's integral formula, we have the
following expression:

Wn =
1

2\pi i

\int 
| \xi | =\rho 

\xi  - n - 1\widetilde W (\xi )d\xi 

=
\tau 

2\pi i

\int 
| \xi | =\rho 

\xi  - n - 1
\Bigl( 
\delta k(\xi ) + \tau A

\Bigr)  - 1\Bigl[ 
 - 

\Bigl( \xi 

1 - \xi 

\Bigr) 
Av +\widetilde \=fn(\xi )\Bigr] d\xi .

Therefore we obtain the solution representation

(2.12) Un = (I + Fn\tau )v + \tau 

n\sum 
j=1

En - j\tau 
\=fj ,

where the discrete operators Fn\tau and En\tau are, respectively, defined by

(2.13)

Fn\tau =  - 1

2\pi i

\int 
| \xi | =\rho 

1

\xi n(1 - \xi )

\Bigl( 
\delta k(\xi )/\tau +A

\Bigr)  - 1

Ad\xi ,

En\tau =
1

2\pi \tau i

\int 
| \xi | =\rho 

\xi  - n - 1
\Bigl( 
\delta k(\xi )/\tau +A

\Bigr)  - 1

d\xi .

Now we recall a useful estimate (cf. [57, Lemma 10.3]). For k = 1, . . . , 6, there
are positive constants c, C, and \lambda 0 (depending only on the BDFk method) such that

(2.14)
\bigm| \bigm| \bigm| 1

2\pi i

\int 
| \xi | =\rho 

\xi  - n - 1(\delta k(\xi ) + \lambda ) - 1 d\xi 
\bigm| \bigm| \bigm| \leq \Biggl\{ 

Ce - cn\lambda , 0 < \lambda \leq \lambda 0,

C\lambda  - 1e - cn, \lambda > \lambda 0.

This together with the coercivity property (1.2) immediately implies the following
lemma.
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PARALLEL-IN-TIME BDF SCHEMES A3637

Lemma 2.4. Let En\tau be the discrete operator defined in (2.13). Then

\| En\tau \| H\rightarrow H \leq c2e
 - c1tn .

Here the generic positive constants c1 and c2 are independent of n and \tau .

2.4. Convergence analysis. In this section, we analyze the convergence of the
iterative scheme (2.5), or, equivalently,

(2.15)
\=\partial \tau U

n
m +AUnm = \=fn  - \kappa 

\tau 
Gnm, n = 1, 2, . . . , N,

U - j
m = v, j = 0, 1, . . . , k  - 1,

where the term Gnm is given by

(2.16) Gnm =

k\sum 
j=n

\omega j

\Bigl( 
UN+n - j
m  - UN+n - j

m - 1

\Bigr) 
.

Here, the summation is assumed to vanish if the lower bound is greater than the upper
bound. We aim to show that UNm converges to UN , the solution of the time stepping
scheme (2.1), as m\rightarrow \infty .

Lemma 2.5. Let Unm be the solution to the iterative scheme (2.5) with v = 0 and
\=fn = 0 for all n = 1, 2, . . . , N . Then we can choose a proper parameter \kappa > 0 in (2.5),
which is independent of step size \tau , such that the following estimate is valid:

k - 1\sum 
j=0

\| UN - j
m \| \leq \gamma (\kappa )

k - 1\sum 
j=0

\| UN - j
m - 1\| .

Here \gamma (\kappa ) \in (0, 1) is constant depending on \kappa , \beta 0, and T , but independent of \tau .

Proof. Following the preceding argument in section 2.3, Unm could be represented
by

(2.17)

Unm =  - \kappa 
n\sum 
i=1

En - i\tau Gim

=  - \kappa 
min\{ k,n\} \sum 
i=1

En - i\tau 

k\sum 
j=i

\omega j(U
N+i - j
m  - UN+i - j

m - 1 ), n = 1, 2, . . . , N.

Now we take the H norm in (2.17) and apply Lemma 2.4 to obtain

k - 1\sum 
j=0

\| UN - j
m \| \leq c\kappa e - c1T

k - 1\sum 
j=0

\| UN - j
m  - UN - j

m - 1\| ,

where c is a generic constant and c1 is the constant in Lemma 2.4. Then we apply
the triangle inequality by choosing \kappa small enough such that c\kappa e - c1T < 1, and hence
we derive that

k - 1\sum 
j=0

\| UN - j
m \| \leq c\kappa e - c1T

1 - c\kappa e - c1T

k - 1\sum 
j=0

\| UN - j
m - 1\| .
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A3638 SHUONAN WU AND ZHI ZHOU

Finally, we define the convergence factor

(2.18) \gamma (\kappa ) :=
c\kappa e - c1T

1 - c\kappa e - c1T
.

Then by choosing \kappa sufficiently small such that c\kappa e - c1T \in (0, 1/2), we have \gamma (\kappa ) \in 
(0, 1). This completes the proof of the desired assertion.

Corollary 2.6. Let Unm be the solution to the iterative scheme (2.5), and let
Un be the solution to the k-step BDF scheme (2.1). Then we can choose a proper
parameter \kappa > 0 in (2.5), which is independent of step size \tau , such that the following
estimate is valid:

k - 1\sum 
j=0

\| UN - j  - UN - j
m \| \leq \gamma (\kappa )

k - 1\sum 
j=0

\| UN - j  - UN - j
m - 1\| for all m \geq 1.

Here \gamma (\kappa ) \in (0, 1), is constant depending on \kappa , \beta 0, and T , but independent of \tau .

Proof. To this end, we let enm = (Unm  - Un) and note that the time stepping
solution \{ Un\} Nn=1 is the fixed point of the iteration (2.5). Therefore enm satisfies

\=\partial \tau e
n
m +Aenm =  - \kappa 

\tau 
Kn
m, n = 1, 2, . . . , N,

e - jm = 0, j = 0, 1, . . . , k  - 1,

where the term Km
n is given by

Kn
m =

k\sum 
j=n

\omega j(e
N+n - j
m  - eN+n - j

m - 1 ).

Then the convergence estimate follows immediately from Theorem 2.7.

Combining Corollary 2.6 with the estimate (2.4), we have the following error
estimate of the iterative scheme (2.5).

Theorem 2.7. Suppose that the assumptions (1.2) and (2.3) are valid. Let Unm
be the solution to the iterative scheme (2.5) with the initial guess Un0 = v for all
0 \leq n \leq N , and let u be the exact solution to the parabolic equation (1.1). Then by
choosing proper relaxation parameter \kappa \in (0, 1) which is independent of step size \tau ,
the following estimate is valid:

\| Unm  - u(tn)\| \leq c(\gamma (\kappa )m + \tau kt - kn ) for all n = 1, 2, . . . , N.

Here constants \gamma (\kappa ) \in (0, 1) and c > 0 might depend on k, \kappa , \beta 0, T , v, and f , but
they are independent of m, n, \tau , and u.

Proof. We split the error into two parts:

Unm  - u(tn) = (Unm  - Un) + (Un  - u(tn)),

where Un is the solution to the k-step BDF scheme (2.1). Note that the second term
has the error bound (2.4). Meanwhile, via (2.6), we have the estimate

k - 1\sum 
j=0

\| UN - j  - UN - j
m \| \leq \gamma (\kappa )m

k - 1\sum 
j=0

\| UN - j  - v\| \leq \gamma (\kappa )m\| v\| + \gamma (\kappa )m
k - 1\sum 
j=0

\| UN - j\| .
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PARALLEL-IN-TIME BDF SCHEMES A3639

By the error estimate (2.4) and the assumption of data regularity (2.3), we obtain
that

k - 1\sum 
j=0

\| UN - j\| \leq cT .

This, (2.17), and Lemma 2.4 lead to the estimate that

\| Un  - Unm\| \leq c\gamma (\kappa )
\Bigl( k - 1\sum 
j=0

\| UN - j  - UN - j
m \| +

k - 1\sum 
j=0

\| UN - j  - UN - j
m - 1\| 

\Bigr) 
\leq c\gamma (\kappa )m.

Then we obtain the desired result.

Remark 2.3. For the backward Euler method (BDF1), the convergence rate was
proved to be [16]

\gamma (\kappa ) =
\kappa e - c1T

1 - \kappa e - c1T
<

\kappa 

1 - \kappa 
.

So the iterative algorithm converges linearly by choosing \kappa < 1/2, and the smaller
parameter \kappa leads to the faster convergence. However, in section 2.2, we have shown
that the roundoff error is proportional to O(\kappa  - 2), so a tiny \kappa may lead to a disastrous
roundoff error. Therefore one needs to choose a proper \kappa \in (0, 1/2) in order to balance
the roundoff error and the convergence rate.

For k-step BDF methods with 1 < k \leq 6, we obtain a similar result,

\gamma (\kappa ) =
c\kappa e - c1T

1 - c\kappa e - c1T
\leq c\kappa 

1 - c\kappa 
,

with an extra factor c > 1. This is due to the different stability estimate in Lemma
2.4 of linear multistep methods. Even though it is hard to derive an explicit bound of
the generic constant c for k-step BDF methods, our empirical experiments show that
the choice \kappa \approx 0.1 leads to an acceptable roundoff error (\approx 10 - 12), and meanwhile
the convergence is very fast (see Figure 1(b)). Note that the convergence rate is
independent of N , so the increase in the total number of steps will not affect the
robust convergence.

3. Parallel algorithms for nonlocal-in-time subdiffusion equations. In
the section, we consider the subdiffusion equations (1.4), which involve a fractional-
in-time derivative of order \alpha \in (0, 1). The fractional-order differential operator is
nonlocal, and its discretization inherits this nonlocality and looks like a multistep dis-
cretization with an infinitely wide stencil. This motivates us to extend the argument
established in section 2 to the subdiffusion equations (1.4).

3.1. BDF\bfitk scheme for subdiffusion equations. To begin with, we discuss
the development of a PinT algorithm for (1.4). We apply the convolution quadrature
(CQ) to discretize the fractional derivative on uniform grids. Following the same
setting in section 2.2, let \{ tn = n\tau \} Nn=0 be a uniform partition of the time interval
[0, T ], with a time step size \tau = T/N .

CQ was first proposed by Lubich [40, 41] for discretizing Volterra integral equa-
tions. This approach provides a systematic framework to construct high-order nu-
merical methods to discretize fractional derivatives and has been the foundation of
many early works. Specifically, CQ approximates the Riemann--Liouville derivative
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R\partial \alpha t \varphi (tn) with \alpha \in (0, 1), which is defined by

R\partial \alpha t \varphi :=
d

dt

1

\Gamma (1 - \alpha )

\int t

0

(t - s) - \alpha \varphi (s)ds

(with \varphi (0) = 0) by a discrete convolution (with the shorthand notation \varphi n = \varphi (tn))

(3.1) \^\partial \alpha \tau \varphi 
n :=

1

\tau \alpha 

n\sum 
j=0

\omega 
(\alpha )
j \varphi n - j .

Here we consider the BDFk method, for example; then the weights \{ \omega (\alpha )
j \} \infty j=0 are the

coefficients in the power series expansion

(3.2) \delta k(\xi )
\alpha =

\infty \sum 
j=0

\omega 
(\alpha )
j \xi j ,

where \delta k(\xi ) is given by (2.2). Generally, the weights \{ \omega (\alpha )
j \} \infty j=0 can be computed

either by the FFT or recursion [54].

The next lemma provides a useful bound of the coefficients \omega 
(\alpha )
j .

Lemma 3.1. The weights \omega 
(\alpha )
n satisfy the estimate that | \omega (\alpha )

n | \leq c(n + 1) - \alpha  - 1,
where the constant c only depends on \alpha and k.

Proof. The case of k = 1 has been proved in [32, Lemma 12] by using the ex-

pression of the coefficients: \omega 
(\alpha )
n =  - 

\prod n
j=1(1  - 1+\alpha 

j ). However, the closed forms of
coefficients of high-order schemes are not available. Here we provide a systematic
proof for all BDFk methods, k = 1, 2, . . . , 6.

By the definition of \{ \omega (\alpha )
j \} and Cauchy's integral formula, we obtain that

\omega 
(\alpha )
j =

1

2\pi i

\int 
| \xi | =1

\delta k(\xi )
\alpha \xi  - n - 1 d\xi =

\tau 1+\alpha 

2\pi i

\int 
\Gamma \tau 

eztn(\delta k(e
 - z\tau )/\tau )\alpha dz,

where \Gamma \tau := \{ z = iy : y \in \BbbR , | y| \leq \pi /\tau \} . The analyticity together with the periodicity
of the integrand allows the deformation of the contour to

\Gamma \tau \psi = \{ z = re\pm i\psi : 0 \leq r \leq \pi /\tau sin\psi \} ,

with \psi \in (\pi /2, \pi ). Then Lemma 2.1 implies for n \geq 1

| \omega (\alpha )
j | \leq c\tau 1+\alpha 

\int 
\Gamma \tau \psi 

| eztn | | \delta k(ez\tau )| \alpha | dz| \leq c\tau 1+\alpha 
\int \pi 

\tau sin\psi 

0

ertn cos\psi r\alpha d r

\leq c\tau 1+\alpha t - \alpha  - 1
n \leq cn - \alpha  - 1 \leq 4c(n+ 1) - \alpha  - 1.

This together with the uniform bound of \omega 
(\alpha )
0 leads to the desired result.

Using the relation \partial \alpha t \varphi (t) =
R\partial \alpha t (\varphi  - \varphi (0)) (see, e.g., [33, p. 91]), the subdiffusion

problem could be rewritten in the form

R\partial \alpha t (u - v) +Au = f.
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PARALLEL-IN-TIME BDF SCHEMES A3641

Then the time stepping scheme based on the CQ for problem (1.4) is to seek approx-
imations Un to the exact solution u(tn) by

(3.3) \^\partial \alpha \tau (U
n  - v) +AUn = f(tn), n = 1, . . . , N.

By the definition of the discretized operator \^\partial \alpha \tau in (3.1), we have

(3.4) \^\partial \alpha \tau (U
n  - v) =

1

\tau \alpha 

n\sum 
j=0

\omega 
(\alpha )
j (Un - j  - v) =

1

\tau \alpha 

\infty \sum 
j=0

\omega 
(\alpha )
j Un - j =: \=\partial \alpha \tau U

n

by setting the historical initial data

(3.5) Un = v for all n \leq 0.

Then we reformulate the time stepping scheme (3.3)--(3.5) by

(3.6)
\=\partial \alpha \tau U

n +AUn = f(tn), n = 1, 2, . . . , N,

Un = v, n \leq 0.

If the exact solution u is smooth and has sufficiently many vanishing derivatives at
t = 0, then the approximation Un converges at a rate of O(\tau k) uniformly in time t
[41, Theorem 3.1]. However, it generally only exhibits a first-order accuracy when
solving fractional evolution equations even for smooth v and f [8, 31], because the
requisite compatibility conditions

Av + f(0) = 0, and \partial \ell tf(0) = 0 for all \ell = 1, 2, . . . , k

are usually not satisfied. This loss of accuracy is one distinct feature for most time
stepping schemes deriving under the assumption that the solution u is sufficiently
smooth.

In order to restore the high-order convergence rate, we simply modify the starting
steps [8, 31, 43, 64]. In particular, for n \geq 1, the CQ-BDFk scheme seeks Un \in V
such that

(3.7)
\=\partial \alpha \tau U

n +AUn = f(tn) + a(k)n (f(0) - Av) +

k - 2\sum 
\ell =1

b
(k)
\ell ,n\tau 

\ell \partial \ell tf(0) =: \=fn,

Un = v, n \leq 0.

The coefficients a
(k)
n and b

(k)
\ell ,n have to be chosen appropriately (cf. Table 1). For

n \geq k, a
(k)
n and b

(k)
\ell ,n are zero; then \=\partial \alpha \tau u(tn) is the standard CQ-BDFk scheme that

approximates \partial \alpha t u(tn). Then there holds the following error estimate [31, Theorem
2.1].

Lemma 3.2. If the initial data v and forcing data f satisfy

(3.8) v \in H and f \in W k, 1\alpha +\epsilon (0, T ;H) with some \epsilon > 0,

then the time stepping solution Un to (3.7) satisfies the following error estimate:
(3.9)

\| Un  - u(tn)\| \leq c \tau k
\biggl( 
t - kn \| v\| +

k - 1\sum 
\ell =0

t\alpha +\ell  - kn \| \partial \ell tf(0)\| +
\int tn

0

(t - s)\alpha  - 1\| \partial ks f(s)\| ds
\biggr) 
,

where the constant c is independent of \tau and tn.
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A3642 SHUONAN WU AND ZHI ZHOU

3.2. Development of parallel-in-time scheme. In order to develop a parallel
solver for the time stepping method (3.7), we apply the strategy developed in section
2. For given Unm - 1, with 1 \leq n \leq N , we compute Unm by

(3.10)

\=\partial \alpha \tau U
n
m +AUnm = \=fn, n = 1, 2, . . . , N,

U - n
m = v + \kappa (UN - n

m  - UN - n
m - 1 ), n = 0, 1, . . . , N  - 1,

Unm = v, n \leq  - N,

where the revised source term \=fn is given in (3.7). Note that \{ Un\} Nn=1, the exact
time stepping solution to (3.7), is a fixed point of this iteration. We shall examine
convergence in section 3.3.

Now we may rewrite the perturbed BDFk scheme (3.10) in the following matrix
form:

(3.11)
1

\tau \alpha 
(Bk(\kappa )\otimes Ix)Um + (It \otimes A)Um = Fm - 1,

where Um = (U1
m, U

2
m, . . . , U

N
m )T , Fm - 1 = (F1, F2, . . . , FN )T with

(3.12) Fn = \=fn +
\kappa 

\tau \alpha 

N - 1\sum 
j=n

\omega jU
N+n - j
m - 1 +

1

\tau \alpha 

n - 1\sum 
j=0

\omega jv,

and

Bk(\kappa ) =

\left[        

\omega 0 \kappa \omega N - 1 \cdot \cdot \cdot \kappa \omega 2 \kappa \omega 1

\omega 1 \omega 0 \cdot \cdot \cdot \kappa \omega 3 \kappa \omega 2

\omega 2 \omega 1
. . .

...
...

... \omega 0 \kappa \omega N - 1

\omega N - 1 \omega N - 2 \cdot \cdot \cdot \omega 1 \omega 0

\right]        .

Similarly to Lemma 2.3, we have the following result.

Lemma 3.3 (diagonalization). Let \Lambda (\kappa ) = diag(1, \kappa  - 
1
N , . . . , \kappa  - 

N - 1
N ). Then

Bk(\kappa ) = S(\kappa )Dk(\kappa )S(\kappa )
 - 1, S(\kappa ) = \Lambda (\kappa )V,

where V is the Fourier matrix defined in (2.8).

The above lemma implies the parallel solver for (3.10).

Algorithm 3.1 PinT BDFk scheme for subdiffusion.

1: Solve (S(\kappa )\otimes Ix)H = Fm - 1.
2: Solve (Dk(\kappa )\otimes Ix + \tau \alpha It \otimes A)Q = \tau \alpha H.
3: Solve (S(\kappa ) - 1 \otimes Ix)Um = Q.

Speedup analysis of Algorithm 3.1. Due to the nonlocality of the fractional-order
differential operator, the discretized operator (3.4) requires the information of all the
previous steps. In particular, in the nth step of CQ-BDFk scheme, we need to solve
a Poisson-like problem:

(\omega 
(\alpha )
0 I + \tau \alpha A)Un =

n\sum 
j=1

\omega 
(\alpha )
j (U0  - Un - j) + \omega 

(\alpha )
0 U0 + \=fn.
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PARALLEL-IN-TIME BDF SCHEMES A3643

The computation cost of this step is O(nM +Mf ). Then, taking summation over n
from 1 to N , we derive that the total computational cost of the direct implementation
of the CQ-BDFk scheme is O(MN2 +MfN).

Consider the parallelization of Algorithm 3.1 with p used processors. Similar
to the discussion on Algorithm 2.1, the cost of the parallel FFT in steps 1 and 3
is O([MN log(N)]/p). We check the computational cost of Fm - 1 in step 1, which
contains the following three components:

1. The source term \=fn defined in (3.7): The correction is taken at the first few
steps and hence the computational cost is O((MN)/p).

2. The convolution term
\sum N - 1
j=n \omega jU

N+n - j
m - 1 can be rewritten as the nth entry of

\left[       
\omega N \omega N - 1 \cdot \cdot \cdot \omega 2 \omega 1

0 \omega N \cdot \cdot \cdot \omega 3 \omega 2

...
...

. . .
...

...
0 0 \cdot \cdot \cdot \omega N \omega N - 1

0 0 \cdot \cdot \cdot 0 \omega N

\right]       

\left[       
U1
m - 1

U2
m - 1
...

UN - 1
m - 1

UNm - 1

\right]       := WUm - 1.

AlthoughW is not circulant, the above matrix can be extended to be circulant
for the purpose of using the FFT algorithm. More precisely, consider

\biggl[ 
Z W
W Z

\biggr] \biggl[ 
0

Um - 1

\biggr] 
, with Z :=

\left[       
0 0 \cdot \cdot \cdot 0 0
\omega 1 0 \cdot \cdot \cdot 0 0
...

...
. . .

...
...

\omega N - 2 \omega N - 3 \cdot \cdot \cdot 0 0
\omega N - 1 \omega N - 2 \cdot \cdot \cdot \omega 1 0

\right]       .

It can be easily seen that the extended matrix is circulant. Thanks again to
the bulk synchronous parallel FFT algorithm [26], the FFT of the extended
system and [0,Um - 1]

T lead to the computational costs O([N log(N)]/p)
and O([MN log(N)]/p), respectively. By using the inverse FFT, the com-

putational cost of the convolution term
\sum N - 1
j=n \omega jU

N+n - j
m - 1 turns out to be

O([MN log(N)]/p).

3. The convolution term
\sum n - 1
j=0 \omega jv can be computed with the costO([N log(N)+

MN ]/p).

For step 2, the total computational cost isO([\widetilde MfN ]/p). To sum up, the overall cost for

the parallel computation is O([MN log(N) + \widetilde MfN ]/p), which becomes O(M logN +\widetilde Mf ) if p = O(N).

Similar to the discussion on Algorithm 2.1, in order to attain the desired accuracy,
the total computational cost is O([MN(logN)2 + \widetilde MfN logN ]/p) for each processor.

Roundoff error of Algorithm 3.1. In case that Ix = 1 and A = \mu , by using the
same argument as in section 2.2, the roundoff error can be bounded by

\| Um  - \widehat Um\| 2
\| Um\| 2

\leq \epsilon (2N + 1)\kappa  - 2
\Bigl( \Bigl[ \delta k( - 1)

\tau 

\Bigr] \alpha 
+ \mu 

\Bigr) 
(\mu sin(max(\alpha (\pi  - \theta k), \pi /2)))

 - 1.
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A3644 SHUONAN WU AND ZHI ZHOU

For \mu \in [\mu 0,\infty ) and \alpha \in (0, 1), we have the uniform estimate

\| Um  - \widehat Um\| 2
\| Um\| 2

\leq \epsilon (2N + 1)\kappa  - 2
\Bigl( 
1 +

\Bigl[ \delta k( - 1)

\tau 

\Bigr] \alpha 
/\mu 0

\Bigr) 
(sin(max(\alpha (\pi  - \theta k), \pi /2)))

 - 1

\leq Ck\epsilon \kappa 
 - 2N1+\alpha ,

(3.13)

where the constant Ck is

Ck = 3
\Bigl( 
1 +

\Bigl[ \delta k( - 1)

T

\Bigr] \alpha 
/\mu 0

\Bigr) 
(sin(max(\alpha (\pi  - \theta k), \pi /2)))

 - 1.

Note that the constant Ck depends on the order of BDF method, \beta 0 in (1.2), the
terminal time T , and the fractional order \alpha .

3.3. Representation of numerical solution and convergence analysis.
Next, we represent the solution of the time stepping scheme (3.7) as a contour integral
in the complex domain. Following the argument in section 2.3, the solution to the
time stepping scheme (3.7) can be written as

(3.14) Un = (I + Fn\tau )v + \tau 

n\sum 
j=1

En - j\tau 
\=fj ,

where the discrete operators Fn\tau and En\tau are, respectively, defined by

(3.15)

Fn\tau =  - 1

2\pi i

\int 
| \xi | =\rho 

1

\xi n(1 - \xi )

\Bigl( 
(\delta k(\xi )/\tau )

\alpha +A
\Bigr)  - 1

Ad\xi ,

En\tau =
1

2\pi \tau i

\int 
| \xi | =\rho 

\xi  - n - 1
\Bigl( 
(\delta k(\xi )/\tau )

\alpha +A
\Bigr)  - 1

d\xi .

The following lemma provides the decay properties of the discrete solution oper-
ator. The proof is standard (see, for example, [43, 31]), and hence it is omitted.

Lemma 3.4. For the solution operators En\tau defined by (3.15), it holds that

\| En\tau \| H\rightarrow H \leq ct\alpha  - 1
n+1 for all n = 1, 2, . . . . , N,

where the constant c is independent of \tau and n.

In this section, we aim to show the convergence of the iterative method (3.10)
by choosing an appropriate parameter \kappa . Equivalently, the scheme (2.5) could be
reformulated as

(3.16)
\=\partial \alpha \tau U

n
m +AUnm = \=fn  - \kappa 

\tau \alpha 
Gnm, n = 1, 2, . . . , N,

Unm = v, n \leq 0,

where the term Gnm is given by

(3.17) Gnm =

N - 1\sum 
j=0

\omega 
(\alpha )
n+j

\Bigl( 
UN - j
m  - UN - j

m - 1

\Bigr) 
.

We aim to show that UNm converges to UN , the solution of the CQ-BDFk scheme
(3.7), as m\rightarrow \infty .
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PARALLEL-IN-TIME BDF SCHEMES A3645

Lemma 3.5. Let Unm be the solution to the iterative algorithm (3.10) with v = 0
and \=fn = 0 for all n = 1, 2, . . . , N . Then we can choose a proper parameter \kappa =
O(1/ log(N)) in (2.5), such that the following estimate holds:

\| Unm\| \leq ct\alpha  - 1
n \gamma (\kappa )m

\Bigl( 
\tau 

N\sum 
j=1

t - \alpha j \| UN - j+1
0 \| 

\Bigr) 
.

Here \gamma (\kappa ) \in (0, 1) might depend on \alpha , \kappa , \beta 0, and T , but independent of \tau , n, and m.

Proof. By the equivalent formula (3.16) and the expression (3.14), we have

Unm =  - \kappa \tau 1 - \alpha 
n\sum 
i=1

En - i\tau Gim =  - \kappa \tau 1 - \alpha 
n\sum 
i=1

En - i\tau 

N - 1\sum 
j=0

\omega 
(\alpha )
j+i(U

N - j
m  - UN - j

m - 1 ).

Now we take the H norm in the above equality and apply Lemma 3.4 to obtain that

\| Unm\| \leq c\kappa \tau 1 - \alpha 
n\sum 
i=1

t\alpha  - 1
n - i+1

N - 1\sum 
j=0

| \omega (\alpha )
j+i| \| U

N - j
m  - UN - j

m - 1\| 

\leq c\kappa 

n\sum 
i=1

(n - i+ 1)\alpha  - 1
N - 1\sum 
j=0

| \omega (\alpha )
j+i| \| U

N - j
m  - UN - j

m - 1\| .

Then Lemma 3.1 indicates that

(3.18)

\| Unm\| \leq c\kappa 

n\sum 
i=1

(n - i+ 1)\alpha  - 1
N - 1\sum 
j=0

(j + i) - \alpha  - 1\| UN - j
m  - UN - j

m - 1\| 

= c\kappa 

N - 1\sum 
j=0

\| UN - j
m  - UN - j

m - 1\| 
n\sum 
i=1

(n - i+ 1)\alpha  - 1(j + i) - \alpha  - 1

\leq c\kappa \tau \alpha 
N - 1\sum 
j=0

t - \alpha j+1\| U
N - j
m  - UN - j

m - 1\| 
n\sum 
i=1

(n - i+ 1)\alpha  - 1(j + i) - 1

\leq c\kappa t\alpha  - 1
n ln(n+ 1)

\Bigl( 
\tau 

N\sum 
j=1

t - \alpha j \| UN - j+1
m  - UN - j+1

m - 1 \| 
\Bigr) 
.

The last inequality follows from the estimate that [32, Lemma 11]

n\sum 
i=1

(n - i+ 1)\alpha  - 1(j + i) - 1 \leq cn\alpha  - 1 ln(n+ 1).

Multiplying \tau t - \alpha N - n+1 on (3.18) and summing over n, we derive that for \alpha \in (0, 1)

\tau 

N\sum 
n=1

t - \alpha n \| UN - n+1
m \| \leq c\kappa 

\Bigl( 
\tau 

N\sum 
n=1

t - \alpha N - n+1t
\alpha  - 1
n ln(n+1)

\Bigr) \Bigl( 
\tau 

N\sum 
j=1

t - \alpha j \| UN - j+1
m  - UN - j+1

m - 1 \| 
\Bigr) 

\leq c\kappa log(N)
\Bigl( N\sum 
n=1

(N  - n+ 1) - \alpha n\alpha  - 1
\Bigr) \Bigl( 
\tau 

N\sum 
n=1

t - \alpha n \| UN - n+1
m  - UN - n+1

m - 1 \| 
\Bigr) 

\leq c\kappa log(N)
\Bigl( 
\tau 

N\sum 
n=1

t - \alpha n \| UN - n+1
m  - UN - n+1

m - 1 \| 
\Bigr) 
,
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A3646 SHUONAN WU AND ZHI ZHOU

where the constant c in the second inequality depends on \alpha . In the last inequality,
we use the fact that

N\sum 
n=1

(N - n+1) - \alpha n\alpha  - 1 \leq 
N\sum 
n=1

\int n

n - 1

(N - n+1) - \alpha n\alpha  - 1 ds \leq 
N\sum 
n=1

\int n

n - 1

(N - s) - \alpha s\alpha  - 1 ds

=

\int N

0

(N - s) - \alpha s\alpha  - 1 ds =

\int 1

0

(1 - s) - \alpha s\alpha  - 1 ds = B(\alpha , 1 - \alpha ),

where B(\cdot , \cdot ) denotes the Beta function.
Next, we apply the triangle inequality, chose \kappa small enough such that c\kappa log(N) <

1, and hence derive that

(3.19) \tau 

N\sum 
n=1

t - \alpha n \| UN - n+1
m \| \leq c\kappa log(N)

1 - c\kappa log(N)

\Bigl( 
\tau 

N\sum 
n=1

t - \alpha n \| UN - n+1
m - 1 \| 

\Bigr) 
.

Finally, we define

(3.20) \gamma (\kappa ) =
c\kappa log(N)

1 - c\kappa log(N)
.

By choosing \kappa such that c\kappa log(N) \in (0, 1/2), we have \gamma (\kappa ) \in (0, 1). Therefore, by
(3.18), we obtain that

\| Unm\| \leq c\kappa t\alpha  - 1
n log(N)

\Bigl( 
\tau 

N\sum 
j=1

t - \alpha j \| UN - j+1
m  - UN - j+1

m - 1 \| 
\Bigr) 

\leq c\kappa t\alpha  - 1
n log(N)

\Bigl( 
\tau 

N\sum 
j=1

t - \alpha j \| UN - j+1
m \| + \tau 

N\sum 
j=1

t - \alpha j \| UN - j+1
m - 1 \| 

\Bigr) 

\leq c\kappa t\alpha  - 1
n log(N)(1 + \gamma (\kappa ))\tau 

N\sum 
j=1

t - \alpha j \| UN - j+1
m - 1 \| 

\leq ct\alpha  - 1
n \gamma (\kappa )

\Bigl( 
\tau 

N\sum 
j=1

t - \alpha j \| UN - j+1
m - 1 \| 

\Bigr) 
.

Then repeating the estimate (3.19) leads to the desired result.

The stability result in Lemma 3.5 then leads to the convergence.

Corollary 3.6. Let Unm be the solution to the iterative scheme (3.10), and let
Un be the solution to the k-step BDF scheme (3.7). Then we can choose a proper
parameter \kappa = O(1/ log(N)) in (3.10), such that the following estimate holds:

\| Un  - Unm\| \leq ct\alpha  - 1
n \gamma (\kappa )m

\Bigl( 
\tau 

N\sum 
j=1

t - \alpha j \| UN - j+1  - UN - j+1
0 \| 

\Bigr) 
for all m \geq 1.

Here the convergence factor \gamma (\kappa ), given by (3.20), might depend on \kappa , \beta 0, and T , but
independent of \tau , n, and m.
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Proof. To this end, we let enm = (Unm  - Un) with 1 \leq n \leq N and note the fact
that \{ Un\} Nn=1 is the fixed point of the iteration (2.5). Therefore enm satisfies

(3.21)
\=\partial \alpha \tau e

n
m +Aenm =  - \kappa 

\tau 
Kn
m, n = 1, 2, . . . , N,

e - jm = 0, j = 0, 1, . . . , k  - 1,

where the term Kn
m is given by

Kn
m =

N - 1\sum 
j=0

\omega n+j(e
N - j
m  - eN - j

m - 1).

Then the convergence estimate follows immediately from Lemma 3.5.

Combining Corollary 3.6 with the estimate (3.9), we have the following error
estimate of the iterative scheme (3.10).

Theorem 3.7. Suppose that the condition (1.2) and the assumption of data reg-
ularity (3.8) hold true. Let Unm be the solution to the iterative algorithm (3.10) with
initial guess Un0 = v for all 0 \leq n \leq N , and let u be the exact solution to the
subdiffusion equation (1.4). Then for 1 \leq n \leq N , we have

\| Unm  - u(tn)\| \leq c(\gamma (\kappa )mt\alpha  - 1
n + \tau kt - kn ), with \kappa = O(1/ log(N)).

Here constant c and the convergence factor \gamma (\kappa ) given by (3.20) might depend on k,
\kappa , \beta 0, T , v, and f , but they are independent of \tau , n, m, and u.

Proof. We split the error into two parts:

Unm  - u(tn) = (Unm  - Un) + (Un  - u(tn)).

The second term has the error bound by (3.9). Meanwhile, via Corollary 3.6, the first
component converges to zero as m\rightarrow 0, and we have the estimate

\| Un  - Unm\| \leq ct\alpha  - 1
n \gamma (\kappa )m

\Bigl( 
\tau 

N\sum 
j=1

t - \alpha j \| UN - j+1  - v\| 
\Bigr) 

\leq ct\alpha  - 1
n \gamma (\kappa )m

\Bigl( 
\| v\| + \tau 

N\sum 
j=1

t - \alpha j \| UN - j+1\| 
\Bigr) 
.

Noting that the estimate (3.9) and the assumption of data regularity (3.8) imply the
uniform bound of Un for all n = 1, 2, . . . , N , we obtain that

\| UN  - UNm \| \leq cT t
\alpha  - 1
n \gamma (\kappa )m.

Then the desired result follows immediately.

Remark 3.1. By the expression of the convergence factor \gamma (\kappa ) in (3.20), we
expect that the iteration converges linearly when c\kappa log(N) \in (0, 1/2), i.e., \kappa <
1/(2c logN). Besides, it implies that the convergence rate might deteriorate slightly
for a large N and a fixed \kappa . Surprisingly, our numerical results indicate that the
iteration converges robustly even for relatively large \kappa (cf. Figure 2(b)), and the step
number N seems not affect the convergence rate (cf. Figure 2(a)).
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A3648 SHUONAN WU AND ZHI ZHOU

4. Numerical tests. In this section, we present some numerical results to il-
lustrate and complement our theoretical findings. The computational domain is the
unit interval \Omega = (0, 1) for Examples 4.1 and 4.2, and the unit square \Omega = (0, 1)2

for Example 4.3. In space, it is discretized with the piecewise linear Galerkin finite
element method on a uniform mesh with mesh size h for one-dimensional problems.
For two-dimensional problems, we compute numerical solutions on a uniform triangu-
lation with mesh size h. We focus on the convergence behavior of the iterative solver
to the BDFk solution, since the temporal convergence of the BDFk scheme has been
theoretically studied and numerically examined in [31]. That is, with the fixed time
step size \tau = T/N , we measure the error in the mth iteration

eNm := \| UNm  - UN\| L2(\Omega ),

where we take the BDFk solution UN as the reference solution.

4.1. Numerical results for normal diffusion.

Example 4.1 (1D diffusion equation). We begin with the following one-dimensional
normal diffusion equation:

(4.1)

\left\{     
\partial tu - \partial xxu = f(x, t) in \Omega \times (0, T ],

u = 0 on \partial \Omega \times (0, T ],

u(0) = v in \Omega ,

where \Omega = (0, 1) and T = 0.5. We consider the problem data

v(x) = \chi (0, 12 )
(x) and f(x, t) = et cos(x),

where \chi denotes the characteristic function.
First, we check the performance of the algorithm for different PinT BDFk schemes.

Taking \kappa = 0.5 and \tau = T/100, the numerical results using Algorithm 2.1 with differ-
ent orders of BDF schemes are presented in Table 2. It can be seen that all the PinT
BDFk schemes (k \leq 6) converge fast in a similar manner. In what follows, we take
the PinT BDF3 scheme to check the influence of different N (or \tau ) and \kappa .

Table 2
Example 4.1: eNm for T = 0.5, \tau = T/100, h = 1/1000, and \kappa = 0.5.

m\setminus BDFk k = 1 k = 2 k = 3 k = 4 k = 5 k = 6
0 1.20e-01 1.20e-01 1.20e-01 1.20e-01 1.20e-01 1.20e-01
1 4.88e-04 4.43e-04 4.44e-04 4.44e-04 4.44e-04 4.44e-04
2 1.98e-06 1.59e-06 1.60e-06 1.60e-06 1.60e-06 1.60e-06
3 8.05e-09 5.72e-09 5.79e-09 5.79e-09 5.79e-09 5.78e-09
4 2.81e-11 2.37e-11 1.98e-11 1.74e-11 1.92e-11 1.99e-11
5 4.76e-12 3.09e-12 1.11e-12 3.54e-12 1.81e-12 1.10e-12

Taking \kappa = 0.5, we report the convergence histories with different time step sizes
in Figure 1(a). It is seen that the convergence rate is independent of \tau , which agrees
well with Corollary 2.6. In Figure 1(b) we plot the convergence histories with different
\kappa . It can be seen that, with the decrease of \kappa , the convergence becomes faster, which
is in agreement with the convergence rate in theory (2.18). On the other hand, the
smaller \kappa will lead to larger roundoff errors, as we proved in section 3.2. Hence, one
needs to choose \kappa properly to balance the convergence rate and roundoff error.
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(a) \kappa = 0.5, influence of \tau = T/N
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(b) \tau = T/200, influence of \kappa 

Fig. 1. PinT BDF3 for Example 4.1: T = 0.5 and h = 1/1000.

4.2. Numerical results for subdiffusion. In this subsection, we test the per-
formance of the algorithm for the subdiffusion problem in both 1D and 2D:

(4.2)

\left\{     
\partial \alpha t u - \Delta u = f(x, t) in \Omega \times (0, T ],

u = 0 on \partial \Omega \times (0, T ],

u(0) = v in \Omega .

Example 4.2 (1D subdiffusion equation). In the one-dimensional problem, the
computational domain is \Omega = (0, 1) with equally spaced mesh. The mesh size is set
to be h = 1/M with M = 1000. We consider the problem data

v = \delta 1/2(x) and f(x, t) = 0.

Here the initial data is the Dirac-delta measure concentrated at x = 1
2 , which only

belongs to H - 1
2 - \epsilon (\Omega ) for any \epsilon > 0. In the computation, the initial value is set to be

the L2-projection of delta function; see some details in [30].
Even though the initial condition is very weak, the inverse inequality and the

analysis in [30, 31] imply the error estimate

\| Un  - u(tn)\| \leq c(\tau kh - 
1
2 - \epsilon t - kn + h

3
2 - \epsilon t - \alpha n )

and also the convergence result

\| Un  - Umn \| \leq ct\alpha  - 1
n h - 

1
2 - \epsilon \gamma (\kappa )m

with the same \gamma (\kappa ) as defined in (3.20).
Similar to the normal diffusion, the performance of all the PinT BDFk (k \leq 6)

have the same convergence profile; see Table 3. Moreover, we check the influence of
different N (or \tau ) and \kappa by using the PinT BDF3 scheme. Our theoretical result
(3.20) indicates that the convergence factor is

\gamma (\kappa ) =
c\kappa log(N)

1 - c\kappa log(N)
,

with some generic constant c > 1. So we expect that the iteration converges linearly
when c\kappa log(N) \in (0, 1/2), i.e., \kappa < 1/(2c logN). Besides, it implies that the con-
vergence rate might deteriorate slightly for a large N and a fixed \kappa . Surprisingly,
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A3650 SHUONAN WU AND ZHI ZHOU

our numerical results indicate that the iteration converges robustly even for relatively
large \kappa (cf. Figure 2(b)), and the step number N seems not to affect the convergence
rate (cf. Figure 2(a)). From Figure 2(b), we observe that the influence of \kappa is similar
to the normal diffusion case: the smaller \kappa will lead to a faster convergence rate but
worse roundoff error. In practice, the choice \kappa \approx 10 - 1 leads to an acceptable roundoff
error (\approx 10 - 11), and meanwhile the convergence is fast.

Table 3
Example 4.2: eNm for T = 0.1, \alpha = 0.5, \tau = T/100, h = 1/1000, and \kappa = 0.1.

m\setminus BDFk k = 1 k = 2 k = 3 k = 4 k = 5 k = 6
0 2.46e-01 2.46e-01 2.46e-01 2.46e-01 2.46e-01 2.46e-01
1 6.31e-04 6.28e-04 6.28e-04 6.28e-04 6.28e-04 6.28e-04
2 2.88e-06 2.85e-06 2.85e-06 2.84e-06 2.85e-06 2.85e-06
3 1.34e-08 1.32e-08 1.32e-08 1.32e-08 1.33e-08 1.31e-08
4 8.12e-11 4.79e-11 4.98e-11 8.31e-11 4.27e-11 1.37e-10
5 1.88e-11 8.47e-12 1.86e-11 1.61e-11 3.44e-11 1.50e-10
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(a) \kappa = 0.1, influence of \tau = T/N
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(b) \tau = T/100, influence of \kappa 

Fig. 2. PinT BDF3 for Example 4.2: \alpha = 0.5, T = 0.1, and h = 1/1000.

Example 4.3 (2D subdiffusion equation). In this example, the spatial discretiza-
tion is taken on the uniform triangulation of \Omega = (0, 1)2. We consider the problem
data

v(x) = \chi (0, 12 )\times (0, 12 )
(x) and f(x, t) = cos(t)\chi ( 1

2 ,1)\times ( 1
2 ,1)

(x).

The numerical solutions are computed on a uniform triangular mesh with h =
10 - 2. We also observe that \kappa needs to be properly chosen to balance the convergence
rate and roundoff error; see Figure 3.

Recall that, in the analysis, there is a generic constant c in the convergence
rate (3.20) which depends on the fractional order \alpha and T . We numerically check
these dependencies and present the results in Figures 4 and 5, respectively. Taking
\kappa = 1/ log(N), we observe the faster convergence rate with smaller \alpha when T is small;
see Figure 4(a). With the increase of T , this difference is getting smaller. Further, we
observe the faster convergence rate with greater T for various \alpha in Figure 5, which
shows the significant advantage of the proposed method for long-time simulation.

4.3. Extension to nonlinear problems. In this part, we shall briefly discuss
a possible application of the time-parallel algorithm to the semilinear (sub)diffusion

D
ow

nl
oa

de
d 

09
/2

5/
22

 to
 1

58
.1

32
.1

61
.6

8 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

PARALLEL-IN-TIME BDF SCHEMES A3651
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κ = 10−5

Fig. 3. PinT BDF3 for Example 4.3: convergence histories for \alpha = 0.5, \tau = 10 - 3, and h = 10 - 2.
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(a) T = 0.01, influence of \alpha 
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(b) T = 0.1, influence of \alpha 
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(c) T = 1, influence of \alpha 

Fig. 4. PinT BDF3 for Example 4.3: \kappa = 1/ log(N), \tau = 10 - 3, and h = 10 - 2.
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(b) \alpha = 0.5, influence of T
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(c) \alpha = 0.9, influence of T

Fig. 5. PinT BDF3 for Example 4.3: influence of T for the convergence rate, \kappa = 1/ log(N),
\tau = 10 - 3, and h = 10 - 2.

problem (with \alpha \in (0, 1]):

(4.3)

\Biggl\{ 
\partial \alpha t u(t) +Au(t) + g(u(t)) = f(t) for all t \in (0, T ],

u(0) = v.

To numerically solve (4.3), we follow an idea similar to that introduced in section 3
and consider the modified CQ-BDFk scheme:

(4.4)
\=\partial \alpha \tau U

n  - \Delta Un + g(Un) = \=fn, 1 \leq n \leq N,

Un = v, n \leq 0,

where \=fn := f(x, tn) + a
(k)
n (f(x, 0) + \Delta v  - g(v)) +

\sum k - 2
\ell =1 b

(k)
\ell ,n\tau 

\ell \partial \ell tf(x, 0). If \alpha = 1, it
reduces to a modified BDFk scheme for the classical semilinear parabolic equations.
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A3652 SHUONAN WU AND ZHI ZHOU

It was proved in [59, Theorem 3.4] that

(4.5) \| Un  - u(tn)\| H \leq cT t
\alpha  - min(k,1+2\alpha  - \epsilon )
n \tau min(k,1+2\alpha  - \epsilon )

for arbitrarily small \epsilon .
In order to solve the numerical solution in a time-parallel manner, we consider a

modified Newton's iteration to linearize the problem: for integer \ell \geq 1, we compute
Un\ell = Un\ell  - 1+W

n
\ell , where W

n
\ell satisfies homogeneous Dirichlet boundary condition and

(4.6)
(\=\partial \alpha \tau  - \Delta )Wn

\ell  - g\prime (U \ell  - 1)W
n
\ell = \=fn  - (\=\partial \alpha \tau  - \Delta )Un\ell  - 1  - g(Un\ell  - 1), 1 \leq n \leq N,

Wn
\ell = 0, n \leq 0.

Here U \ell  - 1 denotes an average of Un\ell  - 1 in all levels, defined as

U \ell  - 1 :=
1

N

N\sum 
n=1

Un\ell  - 1.

Then, for each iteration, we shall solve the linear system (4.6) with a time-independent
coefficient. Therefore, we can apply the strategy in sections 2 and 3, i.e., applying
waveform relaxation to derive an iterative solver: with Wn

\ell ,0 = 0 and m = 1, 2, . . ., for
given Wn

\ell ,m - 1, we compute Wn
\ell ,m such that

(4.7)
(\=\partial \alpha \tau  - \Delta )Wn

\ell ,m - g\prime (U \ell  - 1)W
n
\ell ,m = \=fn  - (\=\partial \alpha \tau  - \Delta )Un\ell  - 1  - g(Un\ell  - 1), n = 1, 2, . . . , N,

W - n
\ell ,m = \kappa (WN - n

\ell ,m  - WN - n
\ell ,m - 1), n = 0, 1, . . . , N+1,

Wn
\ell ,m = 0, n \leq  - N.

This is a periodic-like system and hence could be solved in parallel by a diagonalization
technique. We describe the complete iterative algorithm in Algorithm 4.1.

Algorithm 4.1 PinT BDFk scheme for nonlinear models.

1: Initialize Un0 = v for all n \in \BbbZ , and set \ell = 0.
2: for \ell = 1, . . . , L do
3: Initialize Wn

\ell ,0 = 0 for all n \in \BbbZ , and set m = 0.
4: for m = 1, . . . ,m\ell do
5: Solve Wn

\ell ,m satisfying (4.7) in a time parallel manner using Algorithm 2.1 or
3.1.

6: Check the stopping criterion of waveform relaxation.
7: end for
8: Update Un\ell = Un\ell  - 1 +Wn

\ell ,m.
9: Check the stopping criterion of Newton's iteration.

10: end for

Example 4.4 (Allen--Cahn equations). Taking A =  - \Delta , H = L2(\Omega ), V = H1
0 (\Omega ),

and g(u) = 1
\varepsilon 2 (u

3  - u) in (4.3), we obtain the nonlinear problem with \alpha \in (0, 1]:

(4.8)

\left\{       
\partial \alpha t u - \Delta u+

1

\varepsilon 2
(u3  - u) = f(x, t) in \Omega \times (0, T ),

u = 0 on \partial \Omega \times (0, T ),

u(0) = v in \Omega .
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In the case that \alpha = 1 and f(x, t) = 0, the model is called the Allen--Cahn equa-
tion, which is a popular phase-field model, introduced in [1] to describe the motion of
antiphase boundaries in crystalline solids. In the context, u represents the concentra-
tion of one of the two metallic components of the alloy, and the parameter \varepsilon involved
in the nonlinear term represents the interfacial width, which is small compared to the
characteristic length of the laboratory scale; see also [2, 6, 65] for some applications
and [9] for some discussion for fractional models with \alpha \in (0, 1).

We shall investigate the numerical performance of Algorithm 4.1 on the domain
\Omega = (0, 1) with equally spaced mesh. The exterior force f(x, t) is chosen such that

the exact solution yields u = t2

\Gamma (3) sin(2\pi x).

First of all, we test the nonlinear problem (4.8) with \varepsilon = 1 (mild nonlinearity) and
report the error of Newton's iteration, i.e., eN\ell = \| UN\ell  - UN\| L2(\Omega ). In the computation,
we choose the stopping criteria of inner iteration (waveform relaxation) as

\| Wn
\ell ,m  - Wn

\ell ,m - 1\| \infty < 1\times 10 - 12 for all \ell \in \BbbN +.

The numbers of inner iterations are listed in the parentheses. Invoking the error
estimate (4.5), we report the numerical results for \alpha = 0.25 (with BDF1 and BDF2)
and \alpha = 0.75 (with BDF1, BDF2, and BDF3) in Table 4. Numerical results in Table 4
indicate that the inner iteration (waveform relaxation) converges robustly and quickly
for the linearized system (4.6), and the modified Newton's iteration converges fast for
both cases (\alpha = 0.25 and \alpha = 0.75), as does Algorithm 4.1.

Table 4
Example 4.4: eN\ell with T = 0.4, \tau = T/100, h = 1/1000, \kappa = 0.1, and \varepsilon = 1.

\ell \setminus BDFk k = 1 k = 2
0 6.30e-02 6.30e-02
1 9.27e-06(5) 9.27e-06(5)
2 3.64e-09(4) 3.63e-09(4)
3 1.42e-12(3) 1.42e-12(3)

(a) \alpha = 0.25

\ell \setminus BDFk k = 1 k = 2 k = 3
0 5.94e-02 5.94e-02 5.94e-02
1 6.83e-06(5) 6.80e-06(5) 6.80e-06(5)
2 1.95e-09(4) 1.92e-09(4) 1.92e-09(4)
3 5.23e-13(3) 5.06e-13(3) 5.03e-13(3)

(b) \alpha = 0.75

Next, we investigate the influence of the strength of nonlinearity for both sub-
diffusion and normal diffusion cases in Figure 6. As can be seen from Table 4, the
convergence behaviors of Algorithm 4.1 are insensitive with various BDFk schemes,
and hence the results of the BDF2 scheme are presented. We observe that strong
nonlinearity will lower the convergence rate, not only due to the strong nonlinearity
itself to the Newton's iteration, but also possibly to the more inaccurate average U \ell  - 1

in (4.6). As the nonlinearity gets stronger, for example, \varepsilon = 0.05 with \alpha = 0.75 or
\alpha = 1, the modified Newton's iteration does not converge. It is reasonable that the
accuracy of average U \ell  - 1 hinges on the variation of the solutions on a certain time
interval. Practically, a windowing technique could be used in this algorithm: after a
certain number of time steps computed in parallel in the current time window, the
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Fig. 6. PinT BDF3 for Example 4.4: influence of the strength of nonlinearity.

computation can be restarted for the next time window in a sequential way. This is
beyond the scope of current paper and can be considered in the future.
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