Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/95570
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorMa, Men_US
dc.creatorPeng, Ren_US
dc.creatorWang, Zen_US
dc.date.accessioned2022-09-22T06:13:55Z-
dc.date.available2022-09-22T06:13:55Z-
dc.identifier.issn0167-2789en_US
dc.identifier.urihttp://hdl.handle.net/10397/95570-
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.rights© 2019 Elsevier Inc. All rights reserved.en_US
dc.rights© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.rightsThe following publication Ma, M., Peng, R., & Wang, Z. (2020). Stationary and non-stationary patterns of the density-suppressed motility model. Physica D: Nonlinear Phenomena, 402, 132259 is available at https://doi.org/10.1016/j.physd.2019.132259.en_US
dc.subjectDensity–suppressed motilityen_US
dc.subjectSteady statesen_US
dc.subjectDegree indexen_US
dc.subjectMultiple-scale analysisen_US
dc.subjectWave propagationen_US
dc.titleStationary and non-stationary patterns of the density-suppressed motility modelen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume402en_US
dc.identifier.doi10.1016/j.physd.2019.132259en_US
dcterms.abstractIn this paper, we first explore the stationary problem of the density-suppressed motility (DSM) model proposed in Fu et al. (2012) and Liu et al. (2011) where the diffusion rate of the bacterial cells is a decreasing function (motility function) of the concentration of a chemical secreted by bacteria themselves. We show that the DSM model does not admit non-constant steady states if either the chemical diffusion rate or the intrinsic growth rate of bacteria is large. We also prove that when the decay of the motility function is sub-linear or linear, the DSM model does not admit non-constant steady states if either the chemical diffusion rate or the intrinsic growth rate of bacteria is small. Outside these non-existence parameter regimes, we show that the DSM model will have non-constant steady states under some constraints on the parameters. Furthermore we numerically find the stable stationary patterns only when the parameter values are close to the critical instability regime. Finally by performing a delicate multiple-scale analysis, we derive that the DSM model may generate propagating oscillatory waves whose amplitude is governed by an explicit Ginzburg–Landau equation, which is further verified by numerical simulations.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationPhysica D. Nonlinear phenomena, 15 Jan. 2020, v. 402, 132259en_US
dcterms.isPartOfPhysica D. Nonlinear phenomenaen_US
dcterms.issued2020-01-15-
dc.identifier.scopus2-s2.0-85075523257-
dc.identifier.artn132259en_US
dc.description.validate202209 bcfcen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberRGC-B2-0533-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Ma_Stationary_Non-stationary_Patterns.pdfPre-Published version1.17 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

67
Last Week
0
Last month
Citations as of Oct 13, 2024

Downloads

87
Citations as of Oct 13, 2024

SCOPUSTM   
Citations

34
Citations as of Oct 17, 2024

WEB OF SCIENCETM
Citations

34
Citations as of Oct 10, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.