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Abstract. In this paper, we first explore the stationary problem of the density-suppressed
motility (DSM) model proposed in [5, 11] where the diffusion rate of the bacterial cells is a
decreasing function (motility function) of the concentration of a chemical secreted by bacteria
themselves. We show that the DSM model does not admit non-constant steady states if either
the chemical diffusion rate or the intrinsic growth rate of bacteria is large. We also prove that
when the decay of the motility function is sub-linear or linear, the DSM model does not admit
non-constant steady states if either the chemical diffusion rate or the intrinsic growth rate of
bacteria is small. Outside these non-existence parameter regimes, we show that the DSM model
will have non-constant steady states under some constraints on the parameters. Furthermore we
numerically find the stable stationary patterns only when the parameter values are close to the
critical instability regime. Finally by performing a delicate multiple-scale analysis, we derive
that the DSM model may generate propagating oscillatory waves whose amplitude is governed
by an explicit Ginzburg-Landau equation, which is further verified by numerical simulations.
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1. Introduction

Turing (i.e., diffusion-driven) and chemotaxis-driven instabilities have been widely accepted as
two major mechanisms reproducing many exquisite biological spatio-temporal patterns observed
in nature or experiments ([17]). Recently a so-called “self-trapping” mechanism was introduced
into the engineered E. coli strains in the experiment by a synthetic biology approach and spatio-
temporal patterns were observed (see [11]), where E. coli cells excrete a signalling molecule acyl-
homoserine lactone (AHL) such that at low AHL level, E. coli cells undergo run-and-tumble
random motion, while at high AHL levels E. coli cells tumble incessantly and become immotile
as a result of a vanishing macroscopic motility. Later on a system of reaction-diffusion equations
with density-suppressed motility was proposed in the paper [5] to explain the underlying stripe
pattern formation process observed in the experiment of [11]. This paper is concerned with the
model proposed in [5], which reads as

ut = ∆(r(v)u) + σu(1− u), x ∈ Ω, t > 0,

vt = d∆v + u− v, x ∈ Ω, t > 0,
∂u
∂ν = ∂v

∂ν = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω,

(1.1)

where u(x, t) and v(x, t) represent the densities of E. coli cells and AHL, respectively. The first
equation states that E. coli cells undertake a non-random diffusion with a logistic birth-death
kinetics with intrinsic rate σ > 0 saturated at the normalized density 1, where the diffusion rate
of E. coli cells depends on a motility function r(v) satisfying r′(v) < 0 (suppressed effect of AHL
concentration on cell’s motility). d > 0 is a constant representing the diffusive rate of v. The
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model (1.1) is considered in a bounded smooth domain Ω ⊂ RN (N ≥ 1) with zero-Neumann
boundary conditions warranting that no individual crosses the boundary of the habitat, which
is well consistent with the experimental setting of [11] where the experiment was performed in
an isolated apparatus.

Mathematically, system (1.1) may be degenerate due to the property r′(v) < 0 and hence its
analysis becomes delicate. To the best of our knowledge, no much results have been known to
(1.1) as of today. When σ > 0, the existence of global classical solutions of (1.1) was obtained
first in [10] for Ω ⊂ R2 with r(v) satisfying the following hypotheses:

(H1) r(v) ∈ C3([0,∞)), r(v) > 0 and r′(v) < 0 on [0,∞), lim
v→∞

r(v) = 0;

(H2) lim
v→∞

r′(v)
r(v) exists.

It was further shown that if dσ is suitably large such that

σd >
k0
16

, where k0 = max
0≤v≤∞

|r′(v)|2

r(v)
, (1.2)

then the constant steady state (1, 1) is globally asymptotically stable. Numerical simulations
in [10] illustrated that system (1.1) can produce oscillating traveling waves and stable/unstable
aggregation patterns under some conditions on the parameter values. Recently the global exis-
tence of classical solutions of (1.1) was extended to higher dimensions (N ≥ 3) in [23] for large
σ > 0 with a mildly weaker condition than (H1)-(H2). When r(v) is a piecewise constant func-
tion, the analysis of (1.1) with σ > 0 was performed in [19] to study the dynamics of interface
of discontinuity of solutions. When σ = 0, the global existence of class solutions of (1.1) was
established in [25] for the case r(v) = c0/v

k(k > 0) with small constant c0 > 0 in any dimensions
with an extension in [1]. By assuming that r(v) has positive lower and upper bounds, global
classical solutions in two dimensions and global weak solutions in three dimensions of (1.1) with
σ = 0 were obtained in [20]. Except the aforementioned results, no other results appear to be
available and many interesting analytical questions on the density-suppressed motility model
(1.1) have not been addressed, such as traveling wave solutions, stationary (pattern) solutions
and so on.

Among other things, this paper is to explore the stationary problem of system (1.1) which
reads as 

−∆(r(v)u) = σu(1− u), x ∈ Ω,

−d∆v = u− v, x ∈ Ω,
∂u
∂ν = ∂v

∂ν = 0, x ∈ ∂Ω.

(1.3)

In view of the realistic meaning, only nonnegative solutions of (1.3) are of interest. By the well-
known maximum principle and Hopf boundary lemma for elliptic equations, for any nonnegative
classical solution (u, v) of (1.3) with (u, v) ̸≡ (0, 0), it is easily seen that u, v > 0 on Ω. Hence
in this paper we shall consider the existence and non-existence of non-constant positive classical
solutions of (1.3) on Ω. For convenience, we let w = r(v)u and transform problem (1.3) into the
following equivalent one: 

−∆w = σw
r(v) [1−

w
r(v) ], x ∈ Ω,

−d∆v = w
r(v) − v, x ∈ Ω,

∂w
∂ν = ∂v

∂ν = 0, x ∈ ∂Ω.

(1.4)

Throughout the paper, whenever we say a solution of (1.3) or (1.4), we always mean a positive
classical solution. Clearly, system (1.4) has a unique trivial solution (0, 0) and a unique positive
constant solution (r(1), 1). The main purpose of this paper is to find the conditions for the
non-existence and existence of non-constant solutions of the stationary problem (1.4) with r(v)
satisfying the condition (H1) in a bounded smooth domain Ω ⊂ RN (1 ≤ N ≤ 3). From the
global stability result of [10] under condition (1.2), one can conclude that (1.3) and hence (1.4)
under hypotheses (H1)-(H2) will not have non-constant positive solutions in two dimensions if
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σd is large. In this paper, we shall remove the condition (H2) and prove the non-existence of
non-constant solutions of (1.4) in three or lower dimensions for large σd, see Theorem 3.1(a).
More interestingly we find that (1.4) will not have non-constant solution either if σd is sufficiently
small for some r(v) satisfying certain additional conditions besides (H1), see Theorem 3.1(b).
This result is somewhat counterintuitive, since for mathematical models of biology the patterns
(i.e., non-constant solutions) will usually tend to arise when the diffusion rate d or the intrinsic
growth rate σ is small (cf. [13, 15, 24]). We believe this is a distinctive phenomenon caused by
the density-suppressed motility. For moderate value of σd, we show that non-constant positive
solutions of (1.4) may exist, as shown in Theorem 4.1. Furthermore in this paper we use the
multiple-scale analysis to derive that system (1.1) may generate pulsating (oscillating) traveling
waves whose amplitude is shown to be governed by a Ginzburg-Landau equation (see section 5).
We verify our results by numerical simulations showing that the model (1.1) can reproduce the
expanding strip (ring) patterns qualitatively similar to those observed in the experiment of [11].
This in turn justifies the system (1.1) in modeling the cell movement with density-suppressed
motility.

Since the solutions of (1.4) and (1.3) are equivalent under the transformation w = r(v)u,
we shall focus on the transformed system (1.4) in a bounded domain Ω ⊂ RN (1 ≤ N ≤ 3) in
the sequel unless otherwise stated. The rest of this paper is organized as follows. In section
2, we derive a key priori estimate on solutions. In section 3, we find the conditions under
which non-constant positive solutions of (1.4) do not exist. Then we prove the existence of
non-constant positive solutions of (1.4) under some conditions with numerical illustrations in
section 4. Finally we show that system (1.1) can generate oscillating waves whose amplitude is
determined by a Ginzburg-Landau type equation with numerical verifications.

2. A key priori estimates

In order to establish the existence and nonexistence theorem of non-constant steady states
for small σ or d, we need to derive some priori estimates for positive solutions of the system
(1.4). Our result reads as follows:

Proposition 2.1. Let Ω be a bounded domain in RN (1 ≤ N ≤ 3) with smooth boundary. Then
for any given constant d0 > 0, there exists a positive constant c > 1, which depends only on d0
and Ω, such that any positive solution (w, v) of (1.4) satisfies

1

c
≤ w(x), v(x) ≤ c, ∀x ∈ Ω̄,

provided that d ≥ d0. Moreover, if lim inf
v→∞

r(v)v ∈ (r(0),∞], such c is independent of d0 and Ω.

Proof. Assume that w(x0) = max
Ω

w. By the maximum principle and Hopf boundary lemma (see

Proposition 2.2 of [12]), it follows from the first equation of (1.4) that

1− w(x0)

r(v(x0))
≥ 0, so w(x0) ≤ r(v(x0)) ≤ r(0),

which yields

w(x) ≤ r(0), ∀x ∈ Ω̄. (2.1)

Similarly, let w(y0) = min
Ω̄

w and we have

1− w(y0)

r(v(y0))
≤ 0, i.e., w(y0) ≥ r(v(y0)).

This gives

w(x) ≥ min r(v(x)), ∀x ∈ Ω̄. (2.2)

In order to derive the lower bound of w and the upper/lower bounds of v, we first consider
the case that lim infs→∞ r(s)s ∈ (r(0),∞]. In this case, by assuming v(x0) = max

Ω
v, we can

conclude from the maximum principle with Hopf lemma (Proposition 2.2 of [12]) as applied to
3



the second equation of (1.4) and (2.1) that r(v(x0))v(x0) ≤ w(x0) ≤ r(0). Then there exists a
large constant c > 0, independent of σ, d and Ω, such that

v(x) ≤ v(x0) ≤ c, ∀x ∈ Ω. (2.3)

As r(v) is decreasing on [0,∞) with respect to v, (2.2) and (2.3) yield w(x) ≥ r(c) > 0, ∀x ∈ Ω.
Arguing similarly as above, letting v(y0) = min

Ω
v(y), we get from the second equation of (1.4)

that r(v(y0))v(y0) ≥ w(y0) ≥ r(c), and so we find a positive constant c∗ = r(c)
r(0) independent of

σ, d and Ω such that

v(x) ≥ v(y0) ≥ c∗ > 0, ∀x ∈ Ω. (2.4)

For the general case, to obtain the lower bound of w and the upper/lower bounds of v, we rewrite
the equation of v as

−∆v +
1

d
v =

1

d

w

r(v)
, x ∈ Ω;

∂v

∂ν
= 0, x ∈ ∂Ω. (2.5)

On the other hand, integrating the equation of w over Ω yields
∫
Ω

w
r(v)

[
1 − w

r(v)

]
dx = 0, which

gives ∫
Ω

w2

r2(v)
dx =

∫
Ω

w

r(v)
dx ≤

(∫
Ω

w2

r2(v)
dx

) 1
2

|Ω|
1
2 .

Hence, we have ∫
Ω

w2

r2(v)
dx ≤ C0. (2.6)

Hereafter, the positive constant C0 depends only on d0, Ω and may be different from line to line.
In view of (2.6), by the standard Lp-estimates for elliptic equations (see, for instance, [4])

as applied to (2.5), it holds ∥v∥W 2,2(Ω) ≤ C0, ∀d ≥ d0. In the following, we always assume that
d ≥ d0. Then, the well-known embedding theorem (see [4]) allows us to conclude that

∥v∥L∞(Ω) ≤ C0, i.e., v(x) ≤ C0, ∀x ∈ Ω, if 1 ≤ N ≤ 3. (2.7)

Now, (2.7), together with (2.2) and the monotonicity of r, indicates w(x) ≥ r(C0) > 0, ∀x ∈ Ω.

Thus, by a similar argument as obtaining (2.4), we get a positive constant c∗ = r(C0)
r(0) depending

only on d0, Ω such that

v(x) ≥ c∗ > 0, ∀x ∈ Ω.

The proof is now complete. �

3. Nonexistence of nonconstant steady states

In this section, we shall use two different approaches to establish the nonexistence result of
non-constant solutions of (1.4) for large or small d or σ. Hereafter, whenever we say d is large
or small, it should be understood that σ is fixed first; the same convention applies to the case
when we say σ is large or small. The main results we shall prove in this section are stated in
the following theorem.

Theorem 3.1. Let r(v) satisfy the condition (H1). Then we have the following results on the
stationary system (1.4).

(a) Given d > 0, there is a constant σ∗ such that system (1.4) has no non-constant positive
solution if σ > σ∗; Conversely there is a constant d∗ for given σ > 0 such that (1.4) has
no non-constant positive solution if d > d∗.

(b) Assume further that r(v)v is increasing in v ∈ [0,∞). Then the following assertions
hold.

(i) Given d > 0, there is a constant σ∗ such that (1.4) has no non-constant positive
solution if 0 < σ ≤ σ∗;

(ii) Given σ > 0, there is a constant d∗ such that (1.4) has no non-constant positive
solution if 0 < d ≤ d∗ and lim

v→∞
r(v)v ∈ (r(0),∞].
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Remark 3.1. It has been shown in [10] that the constant solution (r(1), 1) is globally asymp-

totically stable if dσ > k0
16 where k0 is defined in (1.2), which indicates that the stationary

problem (1.4) has only positive constant solution (r(1), 1) if dσ > k0
16 . This result was proved in

two dimensions under the hypotheses (H1)-(H2), however, the results in Theorem 3.1(a) hold
for any dimension without condition (H2). The conditions on r(v) imposed in Theorem 3.1(b)
basically requires the decay rate of r(v) must be linear or sublinear. For instance r(v) = 1

(α+βv)ξ

with ξ < 1 or β < α and ξ = 1 is a candidate.

Theorem 3.1 is a consequence of the following series of lemmas.

Lemma 3.1. Let r(v) satisfy the condition (H1). Then the following assertions hold.

(i) If r(v)v is non-decreasing in v ∈ [0,∞), then there exists a positive constant σ∗ such
that (1.4) has no non-constant positive solution provided that 0 < σ ≤ σ∗.

(ii) There exists a positive constant d∗ such that (1.4) has no non-constant positive solution
provided that d ≥ d∗.

Proof. We first verify (i). To this end, we first claim that any positive solution (w, v) of (1.4)
satisfies

(w, v) → (r(1), 1) in C2(Ω̄)× C2(Ω̄), as σ → 0. (3.1)

Notice that c is independent of σ > 0 in Proposition 2.1. By a standard compactness argu-
ment, there exists a sequence σi with σi → 0 as i → ∞ such that the corresponding positive
solution sequence (wσi , vσi) of (1.4) with σ = σi satisfies

(wσi , vσi) → (ŵ, v̂) in C2(Ω̄)× C2(Ω̄), as i → ∞,

where 0 < ŵ, v̂ on Ω̄. Clearly, (ŵ, v̂) solves
−∆ŵ = 0, x ∈ Ω,

−d∆v̂ = ŵ
r(v̂) − v̂, x ∈ Ω,

∂ŵ
∂ν = ∂v̂

∂ν = 0, x ∈ ∂Ω.

(3.2)

Hence, ŵ must be a positive constant. Furthermore, by setting v̂(x∗) = minΩ̄ v̂ and v̂(x∗) =
maxΩ̄ v̂, we have from the maximum principle and Hopf boundary Lemma applied to the second
equation of (3.2) (see also Proposition 2.2 of [12]) that

ŵ

r(v̂(x∗))
− v̂(x∗) ≤ 0,

ŵ

r(v̂(x∗))
− v̂(x∗) ≥ 0.

These inequalities, together with the facts that r(v)v is non-decreasing on [0,∞) and ŵ is a
positive constant, immediately imply

v̂(x∗) = v̂(x∗), i.e., v̂ ≡ a positive constant.

On the other hand, for any fixed i ≥ 1, integrating over Ω̄ the equation satisfied by wσi and
vσi , respectively, we have∫

Ω

{
wσi(x)

r(vσi(x))

(
1− wσi(x)

r(vσi(x))

)}
dx = 0,

∫
Ω

{
wσi(x)

r(vσi(x))
− vσi(x)

}
dx = 0.

Since ŵ and v̂ are positive constants, we send i → ∞ to obtain (ŵ, v̂) = (r(1), 1). Therefore,
the above analysis implies the claim (3.1).

Let us now define

W 2,2
ν (Ω) =

{
g ∈ W 2,2(Ω) :

∂g

∂ν
= 0 on ∂Ω

}
, L2

0(Ω) =
{
g ∈ L2(Ω) :

∫
Ω
gdx = 0

}
and

F(σ, z, v, ξ) = (f1, f2, f3)(σ, z, v, ξ)
5



with

f1(σ, z, v, ξ) = ∆z + σ
(z + ξ)

r(v)

(
1− z + ξ

r(v)

)
,

f2(σ, z, v, ξ) = d∆v +
z + ξ

r(v)
− v,

f3(σ, z, v, ξ) =

∫
Ω

(z + ξ)

r(v)

(
1− z + ξ

r(v)

)
dx,

where w = z + ξ with
∫
Ω zdx = 0 and ξ ∈ R1

+ := [0,∞).
Then

F : R1
+ × (L2

0(Ω) ∩W 2,2
ν (Ω))×W 2,2

ν × R1
+ 7−→ L2

0(Ω)× L2(Ω)× R1.

It is observed that finding the positive solution of (1.4) is equivalent to solving F(σ, z, v, ξ) = 0.
Moreover, F(σ, z, v, ξ) = 0 has a unique solution (z, v, ξ) = (0, 1, r(1)) when σ = 0.

By elementary calculation, we have

Φ ≡ D(z, v, ξ)F(0, 0, 1, r(1)) : (L2
0(Ω) ∩W 2,2

ν (Ω))×W 2,2
ν × R1

+ 7−→ L2
0(Ω)× L2(Ω)× R1,

where

Φ(h, k, τ) =


∆h

d∆k +
1

r(1)
(h+ τ)− r(1) + r′(1)

r(1)
k

−
∫
Ω

{ 1

r(1)
(h+ τ)− r′(1)

r(1)
k
}
dx

 .

In order to use the implicit function theorem, we need to verify that Φ is both invertible and
surjective. Indeed, assume that Φ(h, τ, k) = (0, 0, 0). Clearly, h = 0. Integrating the second
equation over Ω, and using the third equation and the fact of h = 0, we further have∫

Ω
τdx = r′(1)

∫
Ω
kdx = [r′(1) + r(1)]

∫
Ω
kdx,

which gives
∫
Ω kdx = 0 due to τ ∈ R1, and in turn τ = 0. In addition, k solves

−d∆k = −r(1) + r′(1)

r(1)
k in Ω;

∂k

∂ν
= 0 on ∂Ω.

In light of r(1) + r′(1) ≥ 0 (since r(v)v is non-decreasing in v ∈ [0,∞)) and
∫
Ω kdx = 0, it is

obvious that k = 0. Hence, h = τ = k = 0 and Φ is invertible. On the other hand, one can
easily check that Φ is also a surjection.

As a consequence, the implicit function theorem allows us to conclude that there exist-
s a positive constant σ∗ such that, for each σ ∈ [0, σ∗], (0, 1, r(1)) is the unique solution of

F(σ, z, v, ξ) = 0 in Bσ∗(0, 1, r(1)), where Bσ∗(0, 1, r(1)) is the ball in (L2
0(Ω) ∩ W 2,2

ν (Ω)) ×
W 2,2

ν × R1
+ centered at (0, 1, r(1)) with radius σ∗. Taking smaller σ∗ if necessary, we can see

that the assertion (i) holds by using the claim (3.1).
The proof of (ii) is similar to that of (i). First of all, it can be shown that any positive solution

(w, v) of (1.4) satisfies

(w, v) → (r(1), 1) in C2(Ω̄)× C2(Ω̄), as d → ∞. (3.3)

Then, we set ρ = d−1 and define the analogous operator F :

F(ρ, w, z, ξ) = (f1, f2, f3)(ρ, w, z, ξ) : R1
+×(L2

0(Ω)∩W 2,2
ν (Ω))×W 2,2

ν (Ω)×R1
+ 7−→ L2(Ω)×L2

0(Ω)×R1,
6



where

f1(ρ, w, z, ξ) = ∆w +
σw

r(z + ξ)

(
1− w

r(z + ξ)

)
,

f2(ρ, w, z, ξ) = ∆z + ρ

(
w

r(z + ξ)
− (z + ξ)

)
,

f3(ρ, w, z, ξ) =

∫
Ω

(
w

r(z + ξ)
− (z + ξ)

)
dx,

where v = z + ξ with
∫
Ω zdx = 0 and ξ ∈ R1

+ := [0,∞). Clearly, (w, z, ξ) = (r(1), 0, 1) is the
unique nonnegative nontrivial solution of F (0, w, z, ξ) = 0, and moreover, it is easily verified
that D(w, z, ξ)F (0, r(1), 0, 1) is a bijection. Thus, combined with (3.3), one can use the implicit
function theorem to yield the desired assertion (ii). �

Below we shall derive some nonexistence result of nonconstant steady states when the param-
eter d > 0 is small. To highlight the dependence of solution (w, v) of (1.4) on the parameter
d, we use (wd, vd) instead of (w, v) below. First we determine the asymptotic behaviour of any
positive solution (wd, vd) as d → 0.

Lemma 3.2. Assume that r(v)v is increasing on [0,∞), and lim
v→∞

r(v)v = θ ∈ (r(0),∞]. Then

given σ > 0, any positive solution (wd, vd) of (1.4) satisfies

(wd, vd) → (r(1), 1) uniformly on Ω̄, as d → 0.

Proof. Under our assumption, Proposition 2.1 tells us that c is independent of σ, d > 0 in
Proposition 2.1. Thus, a standard compactness argument, as applied to the first equation in
(1.4), allows one to conclude that there exists a sequence di with di → 0 as i → ∞ such that
the corresponding sequence (wdi , vdi) of positive solutions of (1.4) with d = di satisfies

wdi → w̃ uniformly on Ω̄, as i → ∞, (3.4)

where 0 < w̃ ≤ r(0) on Ω̄ (due to (2.1)). As a result, given any small ε > 0 with ε < w̃ and
w̃ + ε ≤ θ on Ω̄, we have w̃(x)− ε ≤ wdi(x) ≤ w̃(x) + ε, ∀x ∈ Ω̄ for all large i.

Next, let us consider the following two auxiliary problems

−di∆v̄ =
w̃(x) + ε

r(v)
− v, x ∈ Ω;

∂v

∂ν
= 0, x ∈ ∂Ω, (3.5)

and

−di∆v =
w̃(x)− ε

r(v)
− v, x ∈ Ω;

∂v

∂ν
= 0, x ∈ ∂Ω. (3.6)

Clearly, vdi is a lower solution to (3.5) and an upper solution to (3.6) for all large i.
Now, we fix any such large i and treat problem (3.5). Since lim

v→∞
r(v)v > r(0) and w̃(x) ≤ r(0)

on Ω̄, it is easily checked that a sufficiently large positive constant M with M > r(0) is an upper
solution to (3.5). Therefore, the well-known theory of upper-lower solutions ensures that (3.5)
admits at least one positive solution.

In the sequel, we will show that (3.5) has a unique positive solution. Notice that any small
positive constant is also a lower solution of (3.5). Assume that v1 and v2 are any two positive
solutions of (3.5). Then, by the iteration theory of upper-lower solutions. We know that (3.5)
admits a maximal positive solution vmax and a minimal positive solution vmin with vmin ≤ vmax

on Ω̄ satisfying

vmin ≤ v1, v2 ≤ vmax on Ω̄.

Thus, it suffices to verify vmin = vmax on Ω̄.
To this end, let us denote ρ∗ = inf{ρ > 0 : vmax ≤ ρvmin on Ω̄}. Obviously, ρ∗ ≥ 1 and

vmax ≤ ρ∗vmin on Ω̄. If we can show ρ∗ = 1, it is clear that vmin = vmax on Ω̄, as we wanted.
We proceed indirectly and suppose that ρ∗ > 1. First note that ρ∗r(ρ∗v) > r(v), ∀v > 0 since
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r(v)v is increasing in v > 0. To reach a contradiction, we set h = ρ∗vmin − vmax. So h ≥ 0 on
Ω̄, and satisfies

−di∆h+ h = ρ∗
w̃ + ε

r(vmin)
− w̃ + ε

r(vmax)
=

(w̃ + ε)[ρ∗r(vmax)− r(vmin)]

r(vmin)r(vmax)

≥ (w̃ + ε)[ρ∗r(ρ∗vmin)− r(vmin)]

r(vmin)r(vmax)
> 0 in Ω.

In the above, we also used the facts that vmax ≤ ρ∗vmin on Ω̄ and r(v) is decreasing in v > 0.
Since ∂h

∂ν = 0 on ∂Ω, it immediately follows from the strong maximum principle and Hopf

boundary lemma for elliptic equation that h > 0 on Ω̄. This implies that h ≥ ε0vmax on Ω̄ for
some constant ε0 > 0, which in turn gives

ρ∗
1 + ε0

vmin ≥ vmax on Ω̄,

which contradicts the definition of ρ∗.
So far, we have proved that for any given large i, (3.5) has a unique positive solution, denoted

by vi. Similarly, it can be proved that (3.6) also has a unique positive solution denoted by vi,
for any given large i. To proceed further, we need to introduce some notations. As r(v)v is
increasing in v ∈ [0,∞) and lim

v→∞
r(v)v = θ ∈ [r(0),∞], given τ ∈ [0, θ), there exists a unique

v ∈ [0,∞) such that r(v)v = τ . Hence, we can define the C2-function v = g(τ), τ ∈ [0, θ), which
satisfies r(g(τ))g(τ) = τ , and so g(τ) is also increasing in τ ∈ [0, θ).

Given large i, we rewrite (3.5) as follows:

−di∆[g(τ̄i)] =
w̃ + ε− τ̄i
r(g(τ̄i))

, x ∈ Ω;
∂τ̄i
∂ν

= 0, x ∈ ∂Ω,

with r(v̄i)v̄i = τ̄i. On the other hand, an application of the maximum principle yields 0 <
min
Ω̄

w̃ ≤ r(v̄i(x))v̄i(x) ≤ max
Ω̄

w̃ + ε ≤ θ, ∀x ∈ Ω̄. Hence for all large i and for some constant

C0 > 1, we have
1

C0
≤ g(τ̄i) ≤ C0.

As a consequence, a similar analysis as in Lemma 2.4 of [3] concludes that

r(v̄i)v̄i = τ̄i → w̃ + ε uniformly on Ω̄, as i → ∞. (3.7)

Similarly, making use of (3.6), we have

r(vi)vi → w̃ − ε uniformly on Ω̄, as i → ∞. (3.8)

Combining (3.7) and (3.8) and the arbitrariness of ε, we obtain that

r(vdi)vdi → w̃ uniformly on Ω̄, as i → ∞. (3.9)

Hence it follows that

vdi → g(w̃) := ṽ uniformly on Ω̄, as i → ∞, (3.10)

where ṽ ∈ C(Ω̄) and ṽ > 0 on Ω̄.
Together with (3.4) and (3.9), we can send i → ∞ in the first equation in (1.4) to find that

w̃ solves (in the weak and then in the classical sense)

−∆w̃ =
σw̃

r(g(w̃))

[
1− w̃

r(g(w̃))

]
, x ∈ Ω;

∂w̃

∂ν
= 0, x ∈ ∂Ω. (3.11)

Observe that r(g(τ)) is decreasing in τ ≥ 0, and so τ
r(g(τ)) is increasing in τ ≥ 0. Let w̃(x) =

min
Ω̄

w̃ and w̃(x̄) = max
Ω̄

w̃. Then thanks to the maximum principle, we get from (3.11) that

1 ≥ w̃(x̄)

r(g(w̃(x̄)))
and 1 ≤ w̃(x)

r(g(w̃(x)))
.
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This clearly implies that w̃(x̄) = w̃(x), that is, w̃ is a positive constant, and then ṽ is also a
positive constant due to (3.10). Furthermore, it is necessary that (w̃, ṽ) = (r(1), 1). Therefore,
we have proved

(wd, vd) → (r(1), 1) uniformly on Ω̄, as d → 0. (3.12)

The proof is thus complete. �

Lemma 3.3. Assume that r(v)v is increasing in v ∈ [0,∞) and lim
v→∞

r(v)v = θ ∈ (r(0),∞].

Given σ > 0, there exists a small constant d∗ > 0, depending only on σ and Ω, such that (1.4)
has no nonconstant positive solution if 0 < d ≤ d∗.

Proof. We shall employ the topological degree technique to establish the desired result. Denote

D =
{
(w, v) ∈ C(Ω̄)× C(Ω̄) :

1

c+ 1
< w, v < c+ 1

}
,

where c is given in Proposition 2.1, which is now independent of d > 0. Let us define the
operator

A(d, (w, v)) = (−∆+ I)−1

(
w +

σw

r(v)

[
1− w

r(v)

]
, v +

1

d

[
w

r(v)
− v

])
,

where (−∆+ I)−1 represents the inverse operator of −∆+ I with the zero Neumann boundary
condition over ∂Ω. Clearly, (w, v) is a positive solution if and only if A(d, (w, v)) = (w, v). In
addition, A is compact from [d1, d2] ×D to C(Ω̄) × C(Ω̄) for any given 0 < d1 < d2 < ∞, and
A(d, (w, v)) ̸= (w, v) for all d ∈ (0,∞) and (w, v) ∈ ∂D. This implies that the Leray-Schauder
degree deg(I −A(d·),D) is well defined and its value does not depend on d ∈ (0,∞).

Let d∗ be given as in Lemma 3.1(ii). Then (r(1), 1) is the unique positive solution of
A(d∗, (w, v)) = (w, v), which in turn yields

deg(I −A(d∗, ·),D) = index(I −A(d∗, ·), (r(1), 1)),

where index(I−A(d, σ, ·), (r(1), 1)) is the index of the operator I−A(d, ·) at the point (r(1), 1).
Furthermore, the routine computation as in [10] (see Lemma 4.1 (1) below) shows that (r(1), 1)
is linearly stable provided that r′(1) + r(1) ≥ 0 for any d > 0 which is fulfilled due to our
assumption that r(v)v is increasing in v ∈ [0,∞). It then follows from the Leray-Schauder
degree formula (see for instance Theorem 2.8.1 of [16]) that

deg(I −A(d∗, ·),D) = index(I −A(d∗, ·), (r(1), 1)) = 1.

As a result, it holds

deg(I −A(d, ·),D) = index(I −A(d∗, ·),D) = 1, (3.13)

for any d > 0.
In view of Lemma 3.2, it is also easily computed that only possible positive solution (wd, vd)

of (1.4) is linearly stable provided that 0 < d ≤ d∗ for some small d∗ > 0. This indicates that

index(I −A(d, ·), (wd, vd)) = 1, (3.14)

if 0 < d ≤ d∗. Moreover, the linear stability of (wd, vd) implies that for any given 0 < d ≤ d∗,
(1.4) admits at most finitely many such positive solutions, denoted by {(wi, vi)}ℓi=1. Hence it
follows from (3.14) that

deg(I −A(d, ·),D) =

ℓ∑
i=1

index(I −A(d, ·), (wi, vi)) = ℓ. (3.15)

Therefore (3.13) and (3.15) yield ℓ = 1. This implies that (1.4) admits a unique positive solution,
which must be (r(1), 1) if 0 < d ≤ d∗. The proof is now complete. �

By a similar analysis to that of Lemma 3.3, we are able to show the following result.

Lemma 3.4. Given d > 0, there exists a large constant σ∗ > 0 depending only on d and Ω,
such that (1.4) has no nonconstant positive solution if σ ≥ σ∗.
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Proof. First of all, it follows from Proposition 2.1 and the v-equation that, up to a sequence of
σ if necessary, any positive solution (w, v) of (1.4) satisfies

v → ṽ in C1(Ω̄), as σ → ∞, (3.16)

where ṽ > 0 on Ω̄. Now, given small ϵ > 0, consider the following two auxiliary problems:

−∆w = σw
( 1

r(ṽ) + ϵ
− w

(r(ṽ)− ϵ)2

)
, x ∈ Ω;

∂w

∂ν
= 0, x ∈ ∂Ω, (3.17)

and

−∆w = σw
( 1

r(ṽ)− ϵ
− w

(r(ṽ) + ϵ)2

)
, x ∈ Ω;

∂w

∂ν
= 0, x ∈ ∂Ω. (3.18)

In view of (3.16), given large σ > 0, w is an upper-solution to problem (3.17) and a lower solution
to problem (3.18). In addition, (3.17) and (3.18) have a unique positive solution, denoted by wσ

and wσ, respectively. A simple upper-lower solution argument shows that

wσ ≤ w ≤ wσ on Ω̄, for all large σ. (3.19)

Furthermore, a similar analysis as in Lemma 2.4 of [3] concludes that

wσ → (r(ṽ)− ϵ)2

r(ṽ) + ϵ
, wσ → (r(ṽ) + ϵ)2

r(ṽ)− ϵ
uniformly on Ω̄, as σ → ∞. (3.20)

Sending ϵ → 0 in (3.20), it then follows from (3.19) that w → r(ṽ) uniformly on Ω̄, as σ → ∞.
Notice that for all σ > 0, it holds ∫

Ω

( w

r(v)
− v
)
dx = 0. (3.21)

By means of (3.16) and (3.21), We let σ → ∞ and find that ṽ = 1. That is, we have proved
that

(w, v) → (r(1), 1) uniformly on Ω̄, as σ → ∞. (3.22)

Recall again that c depends neither on σ > 0 nor on d ≥ 1 in Proposition 2.1, and as in the
proof of Lemma 3.3, it can be shown that (r(1), 1) is linearly stable for all large σ (see Lemma
4.1(1) below). Now, with the aid of (3.22), one can adapt the argument of Lemma 3.4 to yield
the desired conclusion. The details are omitted here.

�

4. Existence of non-constant stationary solutions

This section is devoted to establishing the existence of non-constant positive solutions to the
stationary problem (1.4) by applying the Leray-Schauder degree theory.

4.1. Preliminaries. We first present the decomposition in the function space based on the
elliptic operator −∆ subject to the zero Neumann boundary condition on Ω. Let

0 = µ0 < µ1 < µ2 < µ3 < · · · < µi < · · · (4.1)

be the sequence of eigenvalues for this elliptic operator −∆ and each µi has multiplicity mi ≥ 1.
Let φij , i ≥ 0, 1 ≤ j ≤ mi, be the normalized eigenfunctions corresponding to µi. Let Xi be the
eigenspace associated with µi in H1(Ω;R2). Then the set {φij , i ≥ 0, j = 1, 2, · · · ,mi} forms a
complete orthogonal basis in L2(Ω). Let X = [H1(Ω)]2 and Xij = {cφij : 1 ≤ j ≤ mi, c ∈ R2}.
Then

X =

∞⊕
i=1

Xi, Xi =

mi⊕
j=1

Xij , (4.2)

where
⊕

denotes the direct sum of subspaces.
It is obvious that system (1.4) has two constant solutions (0, 0) and (r(1), 1)). In order to

compute the degree index of (r(1), 1)), we linearize (1.4) at (r(1), 1)) and have the eigenvalue
problem associated with the linearized system as follows:
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∆w − σ

r(1)w + σr′(1)
r(1) v = ρw, x ∈ Ω,

∆v + 1
dr(1)w − 1

d

(
1 + r′(1)

r(1)

)
v = ρv, x ∈ Ω,

∂w
∂ν = ∂v

∂ν = 0, x ∈ ∂Ω.

(4.3)

It is easily verified that eigenvalues ρi of (4.3) satisfy

ρ2i +Diρi + Ei = 0, i = 0, 1, 2, · · ·, (4.4)

where

Di =
1

dr(1)
[r′(1) + r(1) + 2dr(1)µi + dσ],

Ei =
1

dr(1)

{
(1 + dµi)σ +

[
r′(1) + (1 + dµi)r(1)

]
µi

}
.

It is obvious that

Ei < 0 ⇔ σ < −
[

r′(1)

1 + dµi
+ r(1)

]
µi

def
= σi. (4.5)

Now we give some results on eigenvalues in (4.4), which is easy to be verified.

Lemma 4.1. For d > 0 and σ > 0, the following statements are true:
(1) If either

r′(1) + r(1) ≥ 0

or

r′(1) + r(1) < 0 and σ > −r′(1) + r(1)

d
Then Reρi < 0 for all i ∈ {0, 1, 2, · · ·,∞}, namely (r(1), 1) (resp.(1, 1)) is linearly stable to
(1.4)(resp.(1.3)).

(2) Assume that

0 < σ < σi for some i ∈ {1, 2, · · ·,∞}, (4.6)

then ρ+i is a positive eigenvalue and ρ−i is a negative one, and the algebraic multiplicity of each

one is mi, where ρ±i =
−Di±

√
D2

i−4Ei

2 . This implies that (r(1), 1) (resp.(1, 1)) is linearly unstable
to (1.4)(resp.(1.3)) if (4.6) holds.

(3) If (4.6) is satisfied, then there exists an integer ic ≥ 1 such that

σi > 0 for i ∈ [1, ic], σic+j ≤ 0 for j = 1, 2, 3, · · · ; (4.7)

Moreover, let

σa = max
1≤i≤ic

σi = −
[

r′(1)

1 + dµia

+ r(1)

]
µia and 0 < σ < σa. (4.8)

Then (4.4) has at least one positive root ρ+ia with the algebraic multiplicity mia. Usually, we call
ka =

√
µia the admissible wave number.

(4) If (4.7) holds and σ > σa, then Ei > 0 for all i ∈ {0, 1, 2, · · ·,∞}, so that for each i the
equation (4.4) has two distinct roots with either positive real parts or negative real parts, which
implies that the number of positive real eigenvalues (counting multiplicity ) must be even.

We now treat µi as a real number, then at

µi =
1

d

(√
−r′(1)

r(1)
− 1

)
, (4.9)

the maximum of σi, i ∈ [1, ic] is attained as

σc = max
µi

σi =
1

d

(√
−r′(1)−

√
r(1)

)2
. (4.10)

It is obvious that σc ≥ σa, and σc = σa only when there exists i = ia such that (4.9) holds.
Since the odd number of the positive eigenvalues plays a critical role on the computation of the
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degree index of (r(1), 1), by (3) and (4) in Lemma 4.1, in what follows we shall always assume
the condition (4.7) holds and let σ satisfy

0 < σ < σc. (4.11)

4.2. Main results. We now define a set as

X+ = {(w, v) ∈ X : w, v > 0, x ∈ Ω} ,
and rewrite the system (1.4) in X+ in the matrix form{

W = (I −∆)−1[W +H(σ, d,W )], x ∈ Ω,

∇W · ν = 0, x ∈ ∂Ω,
(4.12)

where W =

(
w
v

)
, (I − ∆)−1 represents the inverse of I − ∆ with homogenous Neumann

boundary conditions, and

H(σ, d,W ) =


σw
r(v)

(
1− w

r(v)

)
1
d

(
w

r(v) − v
)
 .

Then we define an operator P by

P (σ, d,W ) = W − (I −∆)−1[W +H(σ, d,W )], W ∈ X+. (4.13)

Now we look for solutions of (1.4), which is equivalent to finding zero points of the operator P .
We will apply the topological degree theory to prove the existence of non-constant zero points
of P . By a computation, the linearized system of P (σ, d,W ) = 0 at the constant steady state
W ∗ = (r(1), 1) is in the form of

W − (I −∆)−1 (I +∇WH(σ, d,W ∗))W = 0,

where ∇W = ∂
∂W and

∇WH(σ, d,W ∗) =
1

dr(1)

(
−dσ dσr′(1)
1 −(r′(1) + r(1))

)
. (4.14)

It is well known that if the linear operator

∇WP (σ, d,W ∗) = I − (I −∆)−1 (I +∇WH(σ, d,W ∗))

is invertible, then the index of P at W ∗ is computed by

index(P,W ∗) = (−1)γ , (4.15)

where γ stands for the number of the negative eigenvalues of∇WP (σ, d,W ∗). The decomposition
of function space (4.2) implies that, for each integer i ≥ 0 and 1 ≤ j ≤ mi, the subspace Xij is
an invariant space under ∇WP (σ, d,W ∗) and λ ∈ R is an eigenvalue of ∇WP (σ, d,W ∗) in Xi if
and only if λ is an eigenvalue of (1 + µi)

−1 (µiI −∇WH(σ, d,W ∗). Hence, the invertibility of

∇WP (σ, d,W ∗) is equivalent to that of the matrix (µiI −∇WH(σ, d,W ∗)
def
= Mi for all i ≥ 0.

We now define a function by

Γ(σ, d, χ) = det(χI −∇WH(σ, d,W ∗)).

If Γ(σ, d, µi) ̸= 0, then the number of negative eigenvalues of Mi is 1 if and only if Γ(σ, d, µi) < 0;
When Γ(σ, d, µi) > 0, the number of the negative eigenvalues of Mi is 0 or 2. The algebraic
multiplicity of each of them is mi. As such, if Γ(σ, d, µi) ̸= 0 for any i ≥ 0, then by (4.15), we
have (see [13, 14])

γ =
∑

i≥0,Γ(σ,d,µi)<0

mi. (4.16)

It is easy to see that the eigenvalue ρi of (4.3) and the eigenvalue λi of ∇WP (σ, d,W ∗) satisfy
ρi = −(1 + µi)λi. Thus, by (3) and (4) in Lemma 4.1, under the condition (4.11) the formula
(4.16) is well posed.
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Using (4.14), we have

Γ(σ, d, χ) = χ2 +
r′(1) + r(1) + dσ

dr(1)
χ+

σ

dr(1)
. (4.17)

Note that (4.6) implies that r′(1)+r(1) < 0. Therefore if (4.11) is true, then dσ < −(r′(1)+r(1))
and [r′(1)+r(1)+dσ]2−4dσr(1) > 0. Thus, the equation Γ(σ, d, χ) = 0 has two positive distinct
roots χ±(σ, d) given by

χ±(σ, d) =
−[r′(1) + r(1) + dσ]±

√
[r′(1) + r(1) + dσ]2 − 4dσr(1)

2dr(1)
. (4.18)

We are now in a position to present the main result of this section.

Theorem 4.1. Let (4.11) hold and further assume that there exist j > i ≥ 0 such that
(i) µi < χ−(σ, d) < µi+1 and µj < χ+(σ, d) < µj+1;

(ii)
∑j

k=i+1mk is odd.
Then (1.4) has at least one non-constant solution for d > d0 and σ > 0, where d0 is a given

positive constant.

Proof. Proposition 2.1 indicates that there exists a constant c > 1 independent of d > d0 and
σ > 0 such that all positive solutions of (1.4) are located in the following set

D =
{
(w, v) ∈ C(Ω̄)× C(Ω̄) :

1

c+ 1
< w, v < c+ 1

}
. (4.19)

By Lemma 3.1(ii) and Lemma 3.4, one can choose sufficiently large positive constants d∗ and
σ∗ such that

(A1) Γ(σ
∗, d∗, χ) > 0 for all χ ≥ 0, i.e., d∗σ∗ >

(√
−r′(1)−

√
r(1)

)2
;

(A2) The system (1.4) has no non-constant solutions if dσ ≥ d∗σ∗.

Let us define an operator Φ : [0, 1]×D → C(Ω× C(Ω) by

Φ(t,W ) = (I −∆)−1


w + ((1−t)σ∗+tσ)w

r(v)

(
1− w

r(v)

)
v +

(
1−t
d∗ + t

d

) (
w

r(v) − v
)

 .

It is obvious that Φ(t,W ) is compact for each t ∈ [0, 1], a solution of (1.4) is just a fixed point of
Φ(1, ·), and Φ(t, ·) has no fixed points in ∂D for all t ∈ [0, 1]. Thus the Leray-Schauder degree
deg(I − Φ(t, ·),D,0) is well-defined and is a constant for all t ∈ [0, 1] due to the homotopy
invariance of the topological degree, that is,

deg(I − Φ(1, ·),D,0) = deg(I − Φ(0, ·),D,0). (4.20)

By (4.13), we know that I−Φ(1, ·) = P (σ, d, ·). Thus, if we assume that (1.4) has no non-constant
solutions, then (4.15), (4.16) and the given condition (ii) lead to

deg(I − Φ(1, ·),D,0) = index(P (σ, d, ·),W ∗) = (−1)
∑j

k=i+1 mk = −1. (4.21)

On the other hand, by (A2), we have that W ∗ is the unique fixed point of Φ(0, ·). Moreover,
(A1) and (4.15) yield γ is even, then

deg(I − Φ(0, ·),D,0) = index(I − Φ(0, ·),W ∗) = 1. (4.22)

Obviously, (4.20) contradicts (4.21)-(4.22). Hence, our assumption is false, and as a consequence
(1.4) has at least one non-constant solution. The proof is complete. �

Theorem 4.1 gives general sufficient conditions on parameters σ and d such that system (1.4)
admits non-constant solutions. If we fix one of them, then the conditions can be more specifically
expressed. As an illustration, below we shall fix the diffusion rate d > 0 and identify the more
specific conditions on σ to guarantee the existence of non-constant solutions to (1.4).
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Hereafter, we shall use the notation χ±(σ) =: χ±(σ, d) to emphasize the dependence on σ
only by fixing the value of d > 0, where χ±(σ, d) is defined in (4.18). Furthermore, for the sake
of presentation, we re-denote by

0 = µ0 < µ1 ≤ µ2 ≤ µ3 ≤ · · · ≤ µi ≤ · · · (4.23)

all eigenvalues (counting multiplicity) of the elliptic operator −∆ with zero Neumann boundary
condition. In order to calculate the degree index in (4.15), we give some properties of χ±(σ)
below, which can be easily verified by simple calculations.

Lemma 4.2. Let the positive constant d be fixed and (4.11) hold. The following statements are
true.

(i) χ±(σ) > 0, χ−(σc) = χ+(σc) =
√

σc
dr(1) .

(ii) χ−(σ) is monotone decreasing and χ+(σ) is monotone increasing. Furthermore, it holds
that

lim
σ→0+

χ−(σ) = −r′(1) + r(1)

dr(1)
, lim

σ→σ−
c

χ−(σ) =

√
σc

dr(1)
,

and

lim
σ→0+

χ+(σ) = 0, lim
σ→σ−

c

χ+(σ) =

√
σc

dr(1)
.

By the discussion above, we know that χ = µi − (1 + µi)λ, where λ is an eigenvalue of
∇WP (σ, d,W ∗) and µi is defined in (4.23). Hence, ∇WP (σ, d,W ∗) has negative eigenvalues
λi(σ) if and only if

λi(σ) =
µi − χ(σ)

1 + µi
< 0, i = 0, 1, 2, · · ·.

To proceed, we define two indicators as

γ−(σ) = the number of {i ∈ N ∪ {0} : χ−(σ) > µi}

and

γ+(σ) = the number of {i ∈ N ∪ {0} : χ+(σ) > µi},
where N represents the set of positive integers. Obviously, γ−(σ) + γ+(σ) is the number of
negative eigenvalues (counting multiplicity) of ∇WP (σ, d,W ∗). Then the power exponent γ in
(4.15), now denoted by γ(σ) to emphasize the dependence on σ, is

γ(σ) = γ+(σ) + γ−(σ).

Since χ±(σ) > 0 = µ0, we have γ(σ) ≥ 2 for σ ∈ (0, σc). To compute γ(σ), we set

ic = max{i : χ±(σc) > µi}, j0 = max{j : χ−(0) > µic+j}, (4.24)

and

σi = inf{0 < σ < σc : χ+(σ) > µi}, σj = sup{0 < σ < σc : χ−(σ) > µic+j}. (4.25)

Then Lemma 4.2 yields

σ1 ≤ σ2 ≤ · · · ≤ σi ≤ · · · → σc as i → ic and σ1 ≥ σ2 ≥ · · · ≥ σi ≥ · · · → 0 as j → j0.

Let σic def
= σc and σ0 = 0, then

γ+(σ) = i+ 1 for σ ∈ (σi, σi+1), i = 0, 1, · · ·, ic − 1, (4.26)

and let σ0
def
= σc and σj0 = 0, then

γ−(σ) = j + ic + 1 for σ ∈ (σj+1, σj), j = 0, 1, · · ·, j0 − 1, (4.27)

where σi ̸= σi+1 and σj+1 ̸= σj . For sufficiently large σ the degree index of the operator
P (σ, d, ·) is given in the following lemma.
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Lemma 4.3. Let d > 0 be fixed and let σ∗ be a suitably large constant such that σ ≥ σ∗ > σc.
Then it follows that

deg(P (σ, d, ·),D,0) = 1,

where the set D is defined as before, but here it is enough for the constant c to be independent
of σ, σc is the same as in (4.10).

Proof. By Lemma 3.4, we can choose σ∗ sufficiently large so that (1.4) has a unique solution
W ∗ in D for σ ≥ σ∗ > σc. Then we have

deg(P (σ, ·),D,0) = index(P (σ, ·),W ∗) = (−1)γ .

Since σ > σc, Lemma 4.1 (4) indicates that γ is even. Thus, the desired result follows. �
We now present a more specific version of Theorem 4.1 by fixing the value of d > 0.

Corollary 4.1. Let d be fixed. Then the system (1.4) has at least one non-constant solution
provided that

(i) 0 < σ < σc, where σc is defined in (4.11).
(ii) if σ ∈ (σi, σi+1)∩ (σj+1, σj) with σi ̸= σi+1 for some i ∈ {0, 1, · · ·, ic − 1} and σj+1 ̸= σj

for some j ∈ {0, 1, · · ·, j0 − 1}, then γ(σ) = ic + j + i is odd.

Proof. Define Ψ(t, ·) : [0, 1]×D → C(Ω)× C(Ω) by

Ψ(t,W ) = (I −∆)−1[W +H((1− t)σ∗ + tσ, d,W )],

where the set D and σ∗ are taken from Lemma 4.3.
It is clear that Ψ(t, ·) is a compact operator and its all fixed points are located in the interior

of D for t ∈ [0, 1]. Thus, by the homotopy invariance of the topological degree, we have

deg(I −Ψ(1, ·),D,0) = deg(I −Ψ(0, ·),D,0). (4.28)

Since I −Ψ(0, ·) = P (σ∗, d, ·), from Lemma 4.3 it follows that

deg(I −Ψ(0, ·),D,0) = index(P (σ∗, ·),W ∗) = 1. (4.29)

Obviously, I−Ψ(1, ·) = P (σ, d, ·). Thus, if we suppose, to the contrary, that there is no other
solution for (1.4) except the constant one W ∗ in D, then, from the condition (ii) it follows that

deg(I −Ψ(1, .),D,0) = index(I −Ψ(1, .),W ∗)

= index(P (σ, d, .),W ∗) = (−1)γ+(σ)+γ−(σ) = (−1)jc+j+i = −1,

which contradicts (4.28) and (4.29). Thus, our assumption is false, which in turn asserts that
there is at least one non-constant solution to (1.4). The proof is complete. �

Similarly if σ is fixed, more specified conditions on d can be found for the existence of non-
constant solutions. But we shall not explore this cumbersome procedure again here. For illustra-
tion, below we shall present an example to verify Corollary 4.1 in one dimensional interval [0, l]. It

is worthwhile to remind that the Neumann operator −∆ has eigenvalues µi =
(
iπ
l

)2
, i = 0, 1, 2, ···

in [0, l].

4.3. Example. Taking into account condition (H1), we consider the following motility function

r(v) =
1

1 + e8(v−1)
. (4.30)

Let’s consider problem (1.1) in (0, l) with l = 2π and choosing d = 0.4. Then we have
σc =

1

d

(√
−r′(1)−

√
r(1)

)2
= 1.25,

χ±(σc) =

√
σc

dr(1)
= 2.5, χ−(0) =

r′(1) + r(1)

dr(1)
= 7.5.

Thus (4.24) leads to ic = 3, ia = 3 and the admissible wave number ka = 1.5. If we choose
σ = 0.2, then χ+(σ) ≈ 0.1438 and χ−(σ) ≈ 6.9562. By (4.25)-(4.27), we have i = 0, j = 2,
and the degree index γ = ic + j + i = 5. If we choose σ = 0.6, similarly we will have i = 1,
j = 1 and hence γ = ic + j + i = 5. Thus, by Corollary 4.1, the non-constant positive steady
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(a) σ = 0.2 (b) σ = 0.6 (c) σ = 1

Figure 1. Numerical simulations of pattern formation of system (1.1) in [0, 2π],
where r(v) is given by (4.30), d = 0.4 and the initial value (u0, v0) is set as a
small random perturbation of the constant steady state (1, 1).

(a) σ = 0.2 (b) σ = 1

Figure 2. Numerical simulations of pattern formation of system (1.1) in [0, 20],
where r(v) is given by (4.30), d = 0.4 and the initial value (u0, v0) is set as a
small random perturbation of the constant steady state (1, 1).

state of (1.1) will arise, as numerically shown in Fig.1(a) and Fig.1(b). We find that when the
value of σ (like σ = 0.2) is far away from the critical value, the pattern is unstable and second
bifurcation will occur and evolve into periodic-like patterns as observed in Fig.1(a). However if
the value of σ is close to the critical value, the pattern becomes stable as shown in Fig.1(b). On
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the other hand, when the condition (ii) of Corollary 4.1 is not satisfied, the pattern may still
arise as shown in Fig.1(c) for σ = 1 which gives degree index γ = 6. This indicates that the
condition (ii) in Corollary 4.1 may not be necessary for pattern formation. In Fig.2, we increase
the domain size and find similar patterning processes. In both figures, we observe that when the
value of σ is away from the critical value σc = 1.25, the pattern may keep changing in time and
periodic (or chaotic) patterns arise. However if the value of σ is close to the critical value, the
pattern appears to be stable. This implies within the instability region, the pattern dynamics
will be more delicate as the parameter value is getting away from the critical regime. However
how to qualitatively characterize this patterning phenomenon seems to be very challenging.

5. Propagation of pulsating waves

In this section, based on the results obtained in the previous sections, we will investigate
how the pattern invades the whole domain when the size of the spatial domain is large for the
system (1.1). To this end, we have to take into account the slow modulation of the amplitude
of wave-pattern solutions in space. Hence below we shall distinguish the slow and fast spatial
variables, and employ a weakly nonlinear multiple scale analysis to derive a Ginzburg-Landau
type equation which captures the evolution of the amplitude of the prorogating waves. This
method has been widely used in the literature (e.g. see [7, 8]). For simplicity, we shall consider
the problem in one dimension only below.

5.1. Multiple scale analysis. Let Ω = (0, l) with some positive constant l. Then (1.1) can be
rewritten in the form of

ut = ∂xx(r(v)u) + σu(1− u), x ∈ (0, 1), t > 0,
vt = d∂xxv − v + u, x ∈ (0, l), t > 0,
∂xu = ∂xv = 0, x = 0, l, t > 0,
u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ (0, l).

(5.1)

Since the pattern bifurcates from the constant steady state (1, 1), we set

U = u− 1, V = v − 1.

Then (5.1) is changed to{
Ut = ∂xx(r(V + 1)(U + 1))− σU(U + 1),

Vt = d∂xxV + U − V.
(5.2)

Introduce the time and space scales as{
t = t(T1, T2, T3, · · · ), Ti = εit, i = 1, 2, · · · ,
x = x(x,X), X = εx,

(5.3)

where X and x are the slow and the fast spatial variables, respectively, and 0 < ε ≪ 1. Then
the corresponding derivatives decouple as

∂t → ε∂T1 + ε2∂T2 + ε3∂T3 + · · · ,
∂x → ∂x + ε∂X ,

∂xx → ∂xx + 2ε∂xX + ε2∂XX .

(5.4)

The asymptotic expansion of W =

(
U
V

)
and σ in the parameter ε are taken asσ = σa + εσ1 + ε2σ2 + ε2σ3 + · · · ,

W = εW1 + ε2W2 + ε3W3 + · · · ,
(5.5)
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where σa is defined in (4.8), Wi =

(
W1i

W2i

)
, i = 1, 2, 3, · · · . Substituting of (5.4) and (5.5) into

(5.2) and equating of the coefficients with the same powers of ε lead to the following systems

O(ε) : M(σa)W1 = 0, (5.6)

O(ε2) : M(σa)W2 = K(W1), (5.7)

O(ε3 : M(σa)W3 = L(W1,W2), (5.8)

where K =

(
K1

K2

)
, L =

(
L1

L2

)
, and M(σa) =

(
r(1)∂xx − σa r′(1)∂xx

1 d∂xx − 1

)
with

K1 = ∂W11
∂T1

− r′′(1)[(∂xW21)
2 +W21∂xxW21]

−r′(1)[∂x(W11∂xW21) + ∂x(W21∂xW11) + 2∂xXW21]− 2r(1)∂xXW11 + σaW
2
11 + σ1W11,

K2 = ∂W21
∂T1

− 2d∂xXW21

and

L1 = ∂W11
∂T2

+ ∂W12
∂T1

− r′′′(1)[W21(∂xW21)
2 + 1

2W
2
21∂xxW21]

−r′′(1)[W11(∂xW21)
2 +W11W21∂xxW21 +W21∂xxW22 +W22∂xxW21]

−r′′(1)[2W21∂xW21∂xW11 + 2∂xW21∂xW22 +
1
2W

2
21∂xxW11]

−r′(1)[∂x(W21∂xW12) + ∂x(W12∂xW21) + ∂x(W11∂xW22) + ∂x(W22∂xW11)]

−2[r′′(1)∂X(W21∂xW21) + r′(1)∂X(W11∂xW21) + r′(1)∂X(W21∂xW11)]

−[2r′(1)∂xXW22 + 2r(1)∂xXW12 + r′(1)∂XXW21 + r(1)∂XXW11]

+2σaW11W12 + σ1(W
2
11 +W12) + σ2W11,

L2 = ∂W21
∂T2

+ ∂W22
∂T1

− 2d∂xXW22 − d∂XXW21.

Here ∂x and ∂xx represent the first and the second partial derivatives with respect to x, re-
spectively. Substituting (5.4) and (5.5) into the boundary condition U ′ = V ′ = 0, x = 0, l, we
have

∂W1

∂x
= 0,

∂W2

∂x
= −∂W1

∂X
,
∂W3

∂x
= −∂W2

∂X
, · · · . (5.9)

Solving (5.6) with (5.9) yields

W1 = ρA(X,T1, T2) cos(kax), ρ =

(
1 + dk2a

1

)
, (5.10)

where ka = iaπ
l , the letter A represents the amplitude of the pattern and the vector ρ ∈

kerM(σa)|W1 is defined up to a constant. Using (5.10), we have

K1 =
[
(1 + dk2a)

∂A
∂T1

+ σ1(1 + dk2a)A
]
cos(kax)

+
[
r′′(1)k2a + 2r′(1)(1 + dk2a)k

2
a +

1
2σa(1 + dk2a)

2
]
A2 cos(2kax)

+
[
2r(1)(1 + dk2a)ka

∂A
∂X + 2r′(1)ka

∂A
∂X

]
sin(kax) +

1
2σa(1 + dk2a)

2A2,

K2 = ∂A
∂T1

cos(kax) + 2dka
∂A
∂X sin(kax).

For the use of solving system (5.7), we find the solution of the adjoint system of (5.6) is

W 1 =

(
W 11

W 12

)
= ρA(X,T1, T2) cos(kax), ρ =

(
1+dk2a

−r′(1)k2a

1

)
, (5.11)

where ρ is the kernel of the adjoint of the operator M(σa)|W1 . We will apply the solvability
condition for (5.7), i.e.,

⟨K,W 1⟩ =
∫ 2π

ka

0
K1W 1 +K2W 2dx = 0. (5.12)
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Here we should mention that due to the homogeneous Neumann boundary condition, the Fred-
holm alternative has to be used on the interval [0, 2πka ]. Then we can obtain a solution of (5.1)
on the whole domain by employing the method of reflection symmetry and periodic extension.

By (5.12), we have σ1 = 0, T1 = 0. Thus, the expression of solution of (5.7) is in the form of{
W12 = A2(c11 + c12 cos(2kax)) +

∂A
∂X c13 sin(kax),

W22 = A2(c21 + c22 cos(2kax)) +
∂A
∂X c23 sin(kax),

(5.13)

where cij (i = 1, 2, j = 1, 2, 3) solve, respectively, the following systems

Φ0(σa)

(
c11
c21

)
= −

(
σa
2

(
1 + dk2a

)2
0

)
,

Φ2(σa)

(
c12
c22

)
= −

(
σa
2

(
1 + dk2a

)2
+
[
r′′(1) + 2r′(1)(1 + dk2a)

]
k2a

0

)
,

Φ1(σa)

(
c13
c23

)
= 2ka

(
−r′(1)− r(1)

(
1 + dk2a

)
d

)
,

with

Φp(σa) =

 p2r(1)k2a + σa p2r′(1)k2a

1 −1− p2dk2a

 , p = 0, 1, 2.

Substituting (5.10) and (5.13) into L, we have
L1 =

[
(1 + dk2a)

∂A
∂T2

− L
(1)
1

∂2A
∂X2 +H1A

3 + σ2(1 + dk2a)A
]
cos(kax)

+H2A
3 sin2(kax) cos(kax) +H3A

3 cos(kax) cos(2kax) +H4A
3 cos3(kax) + L∗

1,

L2 =
(

∂A
∂T2

− d ∂2A
∂X2 − 2dkac23

∂2A
∂X2

)
cos(kax) + L∗

2,

where L∗
1 and L∗

2 satisfy ⟨L∗
1,W 11⟩ = 0 and ⟨L∗

2,W 21⟩ = 0, and their expressions depend on the
parameters of the system (1.1) and are too cumbersome to give them here. Furthermore,

L
(1)
1 = r′(1)(1 + 2kac23) + r(1)(1 + dk2a + 2kac13),

H1 =
[
r′′(1)c21 + r′(1)c11

]
k2a +

[
r′(1)k2ac21 + 2σac11

]
(1 + dk2a),

H2 = −r′′′(1)k2a − 3r′′(1)k2a(1 + dk2a),

H3 =
[
r′′(1)c22 + r′(1)c12

]
k2a +

[
r′(1)k2ac22 + 2σac12

]
(1 +Dk2a),

H4 =

[
1

2
r′′′(1) +

3

2
r′′(1)(1 + dk2a)

]
k2a.

Again from the solvability condition of (5.8), i.e., ⟨L,W 1⟩ = 0, it follows that

∂A

∂T2
= κ

∂2A

∂X2
+ ςA− ϱA3, (5.14)

where

κ =
(1 + dk2a)L

(1)
1 − dr′(1)k2a(1 + 2kac23)

(1 + dk2a)
2 − r′(1)k2a

, ς =
−σ2(1 + dk2a)

2

(1 + dk2a)
2 − r′(1)k2a

> 0,

ϱ =
(1 + k2a)

(
L
(2)
1 + L

(3)
1

)
(1 + dk2a)

2 − r′(1)k2a
, L

(2)
1 + L

(3)
1 = H1 +

1

4
H2 +

1

2
H3 +

3

4
H4.

Equation (5.14) gives the third order approximation of the amplitude of pattern solution for
(1.1). It is the typical Ginzburg-Landau equation. The coefficient ς is always positive. However,
ϱ can be positive or negative depending on the values of the system parameters. Usually, it is
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called that if ϱ is positive (negative), one has a supercritical (subcritical) bifurcation. Since the
expression for L is quite involved, it is hard to perform a general analytical study of its sign. In
what follows, we will present an example with supercritical bifurcation to demonstrate that the
equation (5.14) can govern the evolution of the amplitude of pattern solution of (1.1). But for
the subcritical case, it is naturally required to push the weakly nonlinear expansion at a higher
order so that one can obtain a higher order Ginzburg-Landau equation to capture the evolution
of the amplitude. This is extraordinarily difficult and will not be pursued here.

For the supercritical case, we can use “tanh” method to obtain the exact solution of (5.14) in
R of the form

A(X,T2) =
1

2

√
ς

ϱ

(
1− tanh

(√
ς

κ

Y − Y0

2
√
2

))
, (5.15)

where Y = X − cT2, c = 3
√

ςκ/2, which is a traveling wave solution of (5.14) connecting 0 and√
ς/ϱ.
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Figure 3. An illustration of modulated progressing wave produced by system
(1.1) where the pattern is formed sequentially and the traveling wavefront is the
precursor to patterning. The red dash line is the third order approximate solution
given by (5.17). The blue solid line is a numerical solution of system (1.1) with
the initial value (u0, v0) = (1, 1) + ερA(X, 0) cos(kax).

5.2. Numerical verifications. Below shall numerically demonstrate that the Ginzburg-Landau
equation (5.14) gives a very good approximation of the amplitude of propagating waves gener-
ated by the motility model (1.1). For definiteness, we consider

r(v) =
1

1 + e8(v−1)

and assume the system parameters d = 1, σ = 0.4, l = 4π. Then system (5.1) reads
ut = ∂xx

(
1

1+e8(v−1)u
)
+ 0.4u(1− u), x ∈ (0, 4π), t > 0,

vt = ∂xxv − v + u, x ∈ (0, 4π), t > 0,
∂xu = ∂xv = 0, x = 0, 4π,
u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ (0, 4π).

(5.16)

By a direct computation, one can find that the admissible mode ia = 4 and the corresponding

admissible wave number ka = 1, ρ =

(
2
1

)
, and the critical value of σ is σc = σa = 0.5.
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Based on the discussion in Section 4, we find that the degree index γ = 7. Then Corollary 4.1
guarantees that (5.16) admits at least one stationary non-constant solution.

Through a tedious computation, we have c11 = −2, c12 ≈ 7.7778 and c13 = 0.4; c21 =
−2, c22 ≈ 1.5556 and c23 = −0.8; κ ≈ 0.6667, ς ≈ 6.6667, and ϱ ≈ 4.2963. Therefore, by (5.10)
and (5.13), the third approximation of the solution component u(X,T2) now is given by

u = 1 + 2εA(X,T2) + 5.7778ε2A2(X,T2), (5.17)

where A(X,T2) is a solution of (5.14) given by (5.15).
We plot the graph of u given by (5.17) in Fig.3 (see the red dashed line), which quantitatively

well captures the evolution of the amplitude of the propagating pattern (see the blue solid line
in Fig.3) generated by system (1.1). There is a subtle quantitative discrepancy at the first bent
which results from the neglect of the higher terms. We observe that the pattern propagates into
the whole domain in the form of oscillatory waves.

6. Summary and discussion

The concept “density-suppressed motility” has been advocated recently in [5, 11] and the
mathematical analysis of the relevant model (1.1) has been touched only on the existence of
global solutions and stability of constant steady states in two dimensions or in higher dimen-
sions for large growth rate σ in the work [10, 23] for σ > 0. When σ = 0, the global existence
of solutions in two or higher dimensions was established in [1, 20, 25] under various assump-
tions. The results on the stationary problem of (1.1) have been unavailable yet. Motivated by
a previous work [10] where the numerical simulations have demonstrated that the model (1.1)
is capable of producing various interesting patterns for appropriate values of d, σ and motility
function r(v), we investigate the existence/nonexistence of non-constant stationary solutions
for the density-suppressed motility model (1.1) supplemented with numerical illustrations. The
primary analytical results of this paper are given in Theorem 3.1 and Theorem 4.1. Moreover
the multiple-scale analysis is performed in section 5 to show that the model (1.1) can generate
periodic traveling waves which qualitatively interprets the expanding strip patterns observed in
the experiment of [11] and the model is hence justified. Given a class of decreasing motility
function r(v) satisfying the condition (H1), Theorem 3.1(a) asserts that for large chemical diffu-
sion coefficient d or bacterial intrinsic growth rate σ, the model (1.1) is incapable of producing
pattern formation. Furthermore if the decay of r(v) is very slow (i.e., sublinear or linear) in v
such as r(v) = 1

(α+βv)ξ
with ξ < 1 or β < α and ξ = 1, Theorem 3.1(b) shows that no pattern

formation can develop from the model (1.1) when d > 0 or σ > 0 is small. These results to-
gether reveal that the model (1.1) can generate pattern formation only in a moderate (narrow)
regime of parameters of d and σ where the decay rate of r(v) with respect to v will play a role.
Therefore the rigorous proof of the existence of non-constant stationary solutions of (1.1) will
be very intricate. In this paper, we explore this question and present some sufficient condition-
s on d, σ and γ(v) warranting the existence of non-constant stationary solutions of (1.1) (see
Theorem 4.1 and Corollary 4.1). By expanding the Laplacian term in the first question and set
χ(v) = −r′(v) > 0, (1.1) becomes a Keller-Segel type chemotaxis system as follows

ut = ∇ · (r(v)u− uχ(v)∇v) + σu(1− u), x ∈ Ω, t > 0,

vt = d∆v + u− v, x ∈ Ω, t > 0,
∂u
∂ν = ∂v

∂ν = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω.

(6.1)

Even if we regard (6.1) as a chemotaxis system, it is also a new type of chemotaxis systems since
the diffusion rate depends on the chemical (signal) concentration. As we know, the available
analytical results of (6.1) are limited to the case of constant r(v) (e.g., see [2, 6, 21] and references
therein). When both r(v) and χ(v) are constant, the complex patterns/dynamics of (6.1) have
been numerically illustrated in [18, 22] and only part of them have been analytically understood
(cf. [9, 13]). Hence we may anticipate that the system (6.1) with non-constant r(v) and χ(v)
will have rich dynamics and complex patterns as illustrated in the numerical simulations of [10].
Accordingly the mathematical understanding of these dynamics/patterns will be intriguing yet
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difficult. This paper takes a step forward to understand the complex dynamics underlying the
model (6.1) for the case χ(v) = −r′(v) (namely the model (1.1)). However our results are far
from the complete understanding of the dynamics of (1.1) in the whole parameter space. For
instance, the critical regime of d and σ for the existence/non-existence of non-constant steady
states is unknown, and how the decay rate of r(v) in v will affect the pattern formation still
remains poorly understood. There are many interesting analytical questions for future studies
and our current work has provided an illuminating insight into the deeper understanding of
complex dynamics underlying the model (6.1) with general r(v) and χ(v).
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