Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/95539
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Electronic and Information Engineeringen_US
dc.creatorZheng, Hen_US
dc.creatorYan, Yen_US
dc.creatorWang, Yen_US
dc.creatorShen, Xen_US
dc.creatorLu, Cen_US
dc.date.accessioned2022-09-21T01:40:49Z-
dc.date.available2022-09-21T01:40:49Z-
dc.identifier.issn0733-8724en_US
dc.identifier.urihttp://hdl.handle.net/10397/95539-
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineersen_US
dc.rights© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.en_US
dc.rightsThe following publication H. Zheng, Y. Yan, Y. Wang, X. Shen and C. Lu, "Deep Learning Enhanced Long-Range Fast BOTDA for Vibration Measurement," in Journal of Lightwave Technology, vol. 40, no. 1, pp. 262-268, Jan.1, 2022 is available at https://doi.org/10.1109/JLT.2021.3117284en_US
dc.subjectBrillouin optical time-domain analysis (BOTDA)en_US
dc.subjectDeep learningen_US
dc.subjectUltra-fast measurementen_US
dc.titleDeep learning enhanced long-range fast BOTDA for vibration measurementen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage262en_US
dc.identifier.epage268en_US
dc.identifier.volume40en_US
dc.identifier.issue1en_US
dc.identifier.doi10.1109/JLT.2021.3117284en_US
dcterms.abstractIn this paper, we propose and experimentally demonstrate a scheme of deep learning enhanced long-range fast Brillouin optical time-domain analysis (BOTDA). The volumetric data from fast BOTDA is denoised and demodulated by using a deep video denoising network and a deep neural network, respectively. Benefitting from the advanced deep learning algorithms, the sensing range of fast BOTDA is extended to 10 km successfully. In experiment, vibration signal is measured with a sampling rate of 23 Hz, 2 m spatial resolution, and 1.19 MHz accuracy over 10 km single-mode fiber with only 4 averages. Due to the low computational complexity and GPU acceleration, the network takes less than 0.04 s to process 100 × 21800 data, which is much faster than the conventional algorithms. This method provides the potential for real-time vibration measurement in fast BOTDA with long sensing range.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationJournal of lightwave technology, 1 Jan. 2022, v. 40, no. 1, p. 262-268en_US
dcterms.isPartOfJournal of lightwave technologyen_US
dcterms.issued2022-01-01-
dc.identifier.scopus2-s2.0-85117125604-
dc.identifier.eissn1558-2213en_US
dc.description.validate202209 bcfcen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberEIE-0102-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextGeneral Research Fund PolyU 15209919; project ZVGB of the Hong Kong Polytechnic Universityen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS59425534-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Zheng_Deep_Learning_Enhanced.pdfPre-Published version2.21 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

65
Last Week
0
Last month
Citations as of Oct 13, 2024

Downloads

147
Citations as of Oct 13, 2024

SCOPUSTM   
Citations

20
Citations as of Oct 17, 2024

WEB OF SCIENCETM
Citations

16
Citations as of Oct 10, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.