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Abstract—In this paper, we propose and experimentally 

demonstrate a scheme of deep learning enhanced long-range fast 
Brillouin optical time-domain analysis (BOTDA). The volumetric 
data from fast BOTDA is denoised and demodulated by using a 
deep video denoising network and a deep neural network, 
respectively. Benefitting from the advanced deep learning 
algorithms, the sensing range of fast BOTDA is extended to 10 km 
successfully. In experiment, vibration signal is measured with a 
sampling rate of 23 Hz, 2 m spatial resolution, and 1.19 MHz 
accuracy over 10 km single-mode fiber with only 4 averages. Due 
to the low computational complexity and GPU acceleration, the 
network takes less than 0.04 s to process 100×21800 data, which is 
much faster than the conventional algorithms. This method 
provides the potential for real-time vibration measurement in fast 
BOTDA with long sensing range. 

Index Terms—Brillouin optical time-domain analysis (BOTDA), 
deep learning, ultra-fast measurement 

I. INTRODUCTION

ISTRIBUTED optical fiber sensors (DOFS) possess the 
capability of continuously measuring the spatial map of 

environmental quantities that can be potentially applied in 
various fields such as structural health monitoring, pipeline 
safety warning, and power generation system monitoring [1]–
[3]. As one of the typical Brillouin scattering based DOFS, 
Brillouin optical time-domain analysis (BOTDA) involves a 
pulsed pump and a CW probe counter-propagating in an optical 
fiber, interacting with each other through the acoustic wave. By 
measuring the Brillouin gain spectrum along the fiber, the 
environmental information can be spatially resolved [4]–[6]. 
BOTDA has advantages of high spatial resolution, long sensing 
distance, and large dynamic strain measurement range. 
However, the acquisition process of BOTDA is quite time-
consuming, since the Brillouin gain spectrum (BGS) needs to 
map step by step over a wide frequency range and a large 
number of averaging is required to enable a desirable SNR. To 
solve this problem, numerous dynamic sensing techniques have 
been presented. Among them, slope-assisted BOTDA [7]–[10], 
sweep free BOTDA [11]–[13], and optical chirp chain BOTDA 
[14]–[16] omit the frequency sweeping process and thus can 
substantially boost the sensing speed. Alternatively, as one of 
the typical techniques to improve the sensing speed of BOTDA, 
fast BOTDA utilizes frequency-agile to reduce frequency 
switching time [17]–[19]. Acquisition rates up to several 
thousand hertz have been demonstrated, while the sensing range 
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is only several hundred meters. With the increase of sensing 
distance, the SNR of signal decrease, number of averaging 
rather than frequency switching time become a dominant factor 
to deteriorate the sensing speed of fast BOTDA.       

To extend the sensing distance of fast BOTDA, cyclic 
coding is employed to enhance the SNR, sensing speed of 440 
Hz is achieved over ~2 km single-mode fiber [20]. Alternately, 
denoising algorithms could also improve the SNR of BOTDA 
without adding any hardware complexity. Several two-
dimensional (2D) or three-dimensional (3D) image (video) 
denoising methods, which exploit redundancies and 
correlations contained in the multidimensional data, have been 
proposed [21]–[27]. The SNR of the sensor was demonstrated 
to be greatly improved by employing non-local means (NLM), 
wavelet denoising (WD), Block-Matching and 3D filtering 
(BM3D), and video BM3D. These conventional image 
denoising algorithms could enhance the sensing performance of 
BOTDA, however, generally involve complex optimization 
problems in the denoising procedure. Thus, these methods are 
time-consuming which cannot be used for real-time processing. 
In contrast, deep-learning based image denoising methods 
require extensive computation only during training. Once the 
network is well trained, it can be applied to perform real-time 
denoising. In 2018, the denoising convolutional neural network 
(DnCNN) was demonstrated to be effective for processing 
BOTDA signals with high data fidelity [28]. A 151 × 50000 size 
image can be effectively denoised in 0.045 s using GPU. 
Moreover, a Brillouin frequency shift (BFS) extraction 
convolutional neural network (BFSCNN) was also developed 
to extract BFS directly from the 2D data [29]. 

Compared with conventional BOTDA, fast BOTDA 
acquires BGSs with a much higher sampling rate, the collected 
data naturally features a strong coherence along the temporal 
axis. In this paper, we apply a fast deep video denoising 
network (fastDVDnet) to process the 3D fast BOTDA data. By 
using volumetric (i.e. spatio-temporal) image data, the temporal 
redundancy in adjacent data is well exploited. An SNR 
improvement of 10.85 dB is achieved via the trained 
fastDVDnet. Combining with the demodulating deep neural 
network (DNN), distributed dynamic strain sensing is achieved 
over 10 km single-mode fiber with 2 m spatial resolution and 
1.19 MHz accuracy. Vibration signal is successfully measured 
with a sampling rate of 23 Hz. Besides, the network only takes 
0.038 s (0.038 s for denoising and 0.001 s for BFS extracting) 

H. Zheng, Y. Yan, Y. Wang, X. Shen and C. Lu are with the Department of
Electronic and Information Engineering, The Hong Kong Polytechnic 
University, Kowloon, Hong Kong, China (email: hua.zheng@polyu.edu.hk).  

Deep learning enhanced long-range fast 
BOTDA for vibration measurement 

Hua Zheng, Yaxi Yan, Yuyao Wang, Xingliang Shen, and Chao Lu 

D

This is the Pre-Published Version.

The following publication H. Zheng, Y. Yan, Y. Wang, X. Shen and C. Lu, "Deep Learning Enhanced Long-Range Fast BOTDA for Vibration 
Measurement," in Journal of Lightwave Technology, vol. 40, no. 1, pp. 262-268, Jan.1, 2022 is available at https://doi.org/10.1109/
JLT.2021.3117284.

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, 
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to 
servers or lists, or reuse of any copyrighted component of this work in other works.



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

2 

to process a 100×21800 image benefiting from GPU 
acceleration, making it potentially useful for real-time data 
processing of long-range BOTDA. 

II. PRINCIPLE  

A. Architecture of fastDVDnet 

 
Fig. 1. The diagram of the basic architecture of fastDVDnet. The model has a 
two-step denoising architecture. Five consecutive frames are used as inputs of 
the model to denoise the central frame. 
 

Fig. 1. displays the diagram of the basic architecture of 
fastDVDnet [30]. The model has a two-step denoising 
architecture. Comparing with one-step denoising, this 
architecture could effectively employ the information existent 
in the temporal neighbors and enforce the temporal correlation 
of the remaining noise in output frames. When denoising a 
given frame at time t, its four neighboring frames are also taken 
as inputs, i.e. It-2, It-1, It, It+1, It+2. Every three consecutive frames 
are fed into denoising block1 to perform denoising. Then the 
three outputs of denoising block1 are further denoised by 
denoising block2. After denoising, the central denoised frame 
is sent into a demodulating block to acquire BFS information. 
All the denoising blocks have the same architecture, while three 
blocks in the first denoising stage (denoising block1) share the 
same weights, which leads to a reduction of memory 
requirements of the model and facilitates the training of the 
network. 
 

 
Fig. 2. The detailed architecture of denoising blocks. The feature map number 
is marked below each layer. 
 

The architecture of denoising blocks is illustrated in Fig. 2. 
Similar to U-Net [31], it has a multi-scale encoder-decoder 
architecture, with skip-connections that forward the output of 
each one of the encoder layers directly to the input of the 
corresponding decoder layers. Three consecutive frames are 
used as input. Meanwhile, a noise map (i.e. the estimate of the 
noise level σ) with the same size of the input frame is also 

included as input, which allows the processing of spatially 
varying noise [32]. In the encoder layers (left side), the features 
of input frames are firstly extracted by two consecutive 
convolutional layers (kernel size=3×3, stride=1, padding=1) 
with batch normalization (BN) and rectified linear units (ReLU) 
activation. Then, convolutional layers (kernel size=3×3, 
padding=1) with a stride of 2 are employed to halves the size of 
feature maps and increase the number of filters to 128, which 
enables the network to learn more higher-level features from 
image data. In the decoder layers, to recover the desired image 
and achieve end to end training, the feature maps need to be 
upsampled. A common operation is using transposed 
convolution. However, transposed convolution has uneven 
overlap when the kernel size (the output window size) is not 
divisible by the stride. The uneven overlaps will produce a 
characteristic checkerboard-like pattern of varying magnitudes. 
To avoid the gridding artifacts, we use the PixelShuffle layer 
instead. This layer repacks its input of dimension 4nch×h/2×w/2 
into an output of size nch×h×w, where nch, h, w are the number 
of channels, the height, and the width, respectively. At the end 
of the network, a convolutional layer is used to map the 32 
component feature vectors to the desired image. The total depth 
of fastDVDnet is 16. 

 

B. Dataset and training 

 

Fig. 3. (a) The schematic diagram of dataset generation. (b) Training loss as a 
function of epoch. 

 
The training dataset consists of input-output pairs: 
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are used to produce the clean patches, the schematic diagram is 
shown in Fig. 3(a). Firstly, a frame consists of 256 BGSs with 
random bandwidth, frequency shift, amplitude is generated. 
The bandwidth of BGS is varied from 30MHz to 70MHz with 
a uniform distribution and the interval of amplitude is set to 
0.01~0.4 according to the experimental data. Then, the 
subsequent frames are produced by shifting a random number 
BGSs of the first frame with different shift steps. 8000 sets of 
BGSs are generated, each set of BGSs contains 20 frames. The 
clean inputs (It-2, It-1, It, It+1, It+2) are generated by randomly 
cropping the stimulated BGSs at the same location in 
contiguous frames and the patch size is set to 96×96.  While the 
noisy patches are produced by adding random Gaussian white 
noise to the ideal BGSs. The range of SNR is 2 dB to 20 dB. 
The loss function is   
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Where I (( , ); )
j j j
t tS M    is the output of the network and θ 

is the set of all learnable parameters. The network is 
implemented in PyTorch. The ADAM algorithm is applied to 
minimize the loss function, with all its hyper-parameters set to 
their default values. The number of epochs is set to 80, and the 
mini-batch size is 16. The learning rate is set to 1e-3 for the first 
50 epochs, then changes to 1e-4 for the following 10 epochs and 
switches to 1e-5 for the remaining of the training. It is trained 
on a computer with an AMD Ryzen 4800H 8-core processor 
and an Nvidia GeForce GTX 2060 GPU. The training loss is 
shown in Fig. 3(b) and the training process takes about 5 hours 
and 25 minutes. 
 

C. BFS demodulating block 

 
Fig. 4. The structure of BFS demodulating block. 

 
To further speed up the entire demodulation process, a deep 

neural network (DNN) rather than Lorentz curve fitting (LCF) 
is used to extract the BFS from the denoised image [33], [34]. 
The structure of the DNN is shown in Fig. 4, which contains 
one input layer, four hidden layers, and one output layer. The 
number of nodes of each layer is set to 100, 80, 40, 15, 5, 1, 
respectively. Each node of the DNN represents a neuron and the 
connecting line represents a synapse with a weight of wij. The 
output of a neuron can be expressed as: 

( )j j ij i jy f w x                               (3) 

where yj is the output of the jth neuron in current layer, fj is the 
activation function, wij is the weight of synapse between the ith 

neuron in the previous layer and the jth neuron in the current 
layer, xi is the output of the ith neuron in the previous layer, θj is 
a constant bias. Vector x (x1 , x2 ,..., xN ) represents the input 
BGS. The DNN is trained with 40000 BGS with an SNR range 
of 10 dB to 20 dB by using error back-propagation (BP) 
algorithm. 
 

III. EXPERIMENTAL SETUP 

 
Fig. 5. Experimental setup. PC: polarization controller, EOM: electro-optic 
modulator, RFS: radio frequency synthesizer, AWG: arbitrary waveform 
generator, EDFA: Erbium-doped fiber amplifier, ISO: isolator, FUT: fiber 
under test, DWDM: dense wavelength division multiplexer, PBC: polarization 
beam combiner, VOA: variable optical attenuator, BPD, balanced 
photodetector, DSO: digital storage oscilloscope. 
 

The experimental setup is shown in Fig. 5. The output of a 
narrow linewidth laser operating at 1549.2 nm is split into two 
branches by using a 50:50 coupler. In the lower branch, a high 
extinction ratio (> 40 dB) electro-optic modulator (EOM) and 
an arbitrary waveform generator (AWG) are employed to 
generate pump pulses with 20 ns pulse width (corresponding to 
a spatial resolution of 2 m). In order to fast scan the Brillouin 
spectral response, the frequency of the pump is swept from 250 
MHz to 448 MHz with a step of 2 MHz by using the frequency-
agile technique. In this way, the BGS can be reconstructed by 
using a low bandwidth AWG and reduce the cost of system. 
Pump pulses are amplified by an erbium-doped fiber amplifier 
(EDFA) and followed by an optical band-pass filter (BPF) to 
filter out the amplified spontaneous emission (ASE) noise. The 
power of pump pulses is carefully adjusted to avoid four-
wave mixing. 

On the other hand, the upper branch is used to generate a 
dual-sideband probe lightwave by another EOM and radio 
frequency synthesizer (RFS). The output frequency of RFS is 
set to 11.18 GHz for static testing, while 11.24 GHz for 
dynamic measurement. To suppress the polarization-dependent 
gain fluctuation, the two sidebands of the probe are separated 
by using a dense wavelength division multiplexer (DWDM) 
[20], [35], [36]. Their polarization state is adjusted to be 
orthogonal and recombine through a polarization beam 
combiner (PBC). After interacting with the pump pulses in fiber 
under test (FUT), the upper and lower sidebands of the probe 
wave are separated by DWDM again and detected by a balanced 
photodetector (BPD) with 200-MHz bandwidth. The electrical 
signals output from the PD are collected by a digital storage 
oscilloscope (DSO) and the acquired data are sent to a computer 
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for further processing. 10 km single-mode fiber whose BFS is 
around 10.826 GHz at room temperature is served as FUT. 

IV. EXPERIMENTAL RESULTS  

A. Static measurement 

 
Fig. 6. (a) Raw BGS distribution along FUT (4 averages). (b) Denoised BGS 
by applying fastDVDnet. (c) The Brillouin time trace before (blue line) and 
after (red line) denoising. (d) The SNR of Brillouin time trace in (c) before (blue 
line) and after (red line) denoising. The black dashed lines show linear fitting 
(in dB scale) of the SNR curves versus distance. 

 

 
Fig. 7. (a) The demodulated BFS along sensing fiber. The blue line is derived 
from raw data (4 averages) by using LCF. The red line and yellow lines are 
derived from the denoised data using DNN and LCF, respectively.  (b) The BFS 
uncertainty of raw data (blue line) and denoised data (red line and green line) 
as a function of fiber length. The black dashed lines show exponential curve 
fitting of the SNR curves versus distance. 

To verify the denoising performance of fastDVDnet, a static 
test is firstly carried out. 48 consecutive frames of 2D BGS are 
measured, the traces are averaged 4 times. Figure 6(a) shows 
one of the BGS and the denoised result is shown in Fig. 6(b). 
Fig. 6(c) compares the raw noisy traces (blue lines) and the ones 
denoised (red lines) by fastDVDnet. The figure points out that 

a large amount of noise is removed from the raw noisy 
measurements, resulting in a significant increase in the contrast 
of the BOTDA traces. Fig. 6(d) shows the SNR of raw data 
(blue line) and denoised data (red line). The SNR is calculated 
by the ratio between the measured local response and the 
standard deviation of the noise floor (i.e. the end of trace where 
pump pulse is absent). The black dashed lines correspond to the 
respective linear fitting (in dB scale) of the SNR versus distance. 
The results indicate that the SNR of 2.5 dB obtained at the end 
of FUT from the raw data can be substantially boosted to 13.35 
dB by applying fastDVDnet. The cascaded two-step denoising 
architecture and end-to-end training make it possible for 
fastDVDnet to handle motion without complicated motion 
estimation algorithm, therefore, reduce the runtimes. It takes 
only 0.038 s to denoise a 100×21800 image, which is much 
faster than VBM3D [37], [38] and other traditional methods 
[39], [40]. (The data transfer time between CPU and GPU is not 
included). 

Fig. 7(a) depicts the acquired BFS from the raw data and 
denoised data by using LCF and DNN, respectively. The 
extracted BFSs show a similar profile, while the fluctuation of 
BFS obtained by denoised data is small than that of raw data, 
indicates a better sensing accuracy. To verify the performance 
of DNN, BFS of denoised data is also demodulated by LCF as 
shown in Fig. 7(a) inset. The results show the same precision, 
whereas DNN only takes 0.001s to extract BFS from 21800 
BGSs. The BFS uncertainty is also evaluated by calculating the 
BFS standard deviation of 12 times continuous measurement as 
shown in Fig. 7(b). The frequency uncertainty of 4.3MHz 
obtained with the raw data at 10 km distance can be effectively 
improved down to 1.19 MHz. 

 

 
Fig. 8. (a) The BFS uncertainty with different averages. (b) BFS profiles around 
an 8 m-long stretched section located near the far end of FUT. The blue line is 
derived from raw data (4 averages) by using LCF, the red line is derived from 
denoised data (denoised by using fastDVDnet) by using DNN and the yellow 
is a reference BFS profile retrieved from measurements of 64 averages. 
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Different from the previous video denoising network [41] 
which is usually tailored to a specific noise level, fastDVDnet 
is trained with various noise levels, thus capable to handle 
different noise levels with a single network. Fig. 8(a) depicts 
the calculated BFS uncertainty with different average times. 
When the average time increases to 16, the BFS uncertainty can 
be effectively reduced to 0.4 MHz, at the expense of sensing 
speed. In order to verify that the fastDVDnet does not penalize 
the spatial resolution, an 8-m section of fiber at 10-km distance 
is stretched by two translation stages to apply strain. The BFS 
profiles around the strain location obtained from the raw data, 
denoised data and averaged data are compared as shown in Fig. 
8(b). The results demonstrate that the applied fastDVDnet has 
little impact on the spatial resolution of the sensor.	
 

B. Dynamic measurement 

 

 
Fig. 9.  The measured BGS as a function of time at the vibrated section of fiber 
with a driving voltage of (a) 1.2 V (raw data, 4 averages), (b) 1.2 V (denoised 
data), (c) 1.4 V (raw data, 4 averages), (d) 1.4 V (denoised data). 

 
In vibration measurement, a section of 2 m fiber at the far 

end is stretched by two translation stages. An electric-motor-
driven eccentric wheel is used to vibrate the fiber to provide 
periodic strain. Fig. 9(a) shows the evolution of BGS at the 
vibrated section when the driving voltage of the motor is 1.2 V 
and Fig. 9(b) is the denoising result. From Fig. 9(b) the 
vibration signal can be clearly observed, the period and 
amplitude are 0.308 s and 726 με, respectively. The higher 
frequency vibration signal is demonstrated by raising the 
driving voltage to 1.4 V, as shown in Fig. 9 (d). Signal up to 
11.5 Hz is expected to be measured as the effective sampling 
rate of the system is 23 Hz. 

To determine the accurate vibration frequency, the vibration 
signals in Fig. 9 are analyzed by using the Fast Fourier 
Transform (FFT), the frequency domain spectrum is shown in 
Fig. 10. The fundamental frequency of 3.25 Hz and 4 Hz can be 
identified. 

 
  Fig. 10. Frequency-domain normalized power spectrum of vibration signals 

in Fig. 9. 
 

C. Comparison with 2D denoising CNN 

 
Fig. 11.  Denoised BGS by using (a) 2D denoising CNN, (b) fastDVDnet, (c) 
Denoised Brillouin time trace by using 2D denoising CNN (blue line) and 
fastDVDnet (red line).  

Comparing with conventional 2D denoising algorithms, the 
3D denoising CNN could effectively exploit the temporal 
redundancy in adjacent data, which is expected to have a better 
performance. To fairly compare 2D denoising CNN and 
fastDVDnet, we modified a denoising block of fastDVDnet as 
a 2D denoising CNN. The modified model takes one frame as 
input and is trained with clean-noisy patches from the same 
dataset. Fig. 11 (a) and (b) show the denoised BGS distribution 
along sensing fiber by using 2D denoising CNN and 
fastDVDnet, respectively. Fig. 11(c) compares the denoised 
Brillouin time traces at the peak gain frequency. It can be seen 
that the trace processed by using 2D CNN is noisier. By using 
fastDVDnet, the SNR is improved about 3.6 dB. 
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V. CONCLUSION 

Engineering structures have always been susceptible to 
various kinds of damage (deterioration, degradation, corrosion, 
fatigue, etc.) during their service life due to environmental, 
operational, and human-induced factors. Thus, the civil 
structures need to be inspected regularly to remain operational 
and protect human lives. However, with their relatively large 
size, damage inspection of civil infrastructure was commonly 
expensive. Vibration-based damage detection methods could 
assess the overall performance of the monitored structure, 
which has become one of the most important automated 
structural health monitoring (SHM) techniques. In this paper, 
we developed a scheme of long-range fast BOTDA for 
vibration measurement. By exploiting fastDVDnet, the SNR is 
greatly improved. Dynamic Brillouin sensing is realized over 
10 km single-mode fiber with a sampling rate of 23 Hz, 2 m 
spatial resolution, and 1.19 MHz accuracy. Moreover, 
benefiting from GPU computing, the measured data can be 
denoising and demodulated in 0.038 s, which is much faster 
than traditional algorithms. The proposed scheme may 
potentially use for real-time remote monitoring of large-scale 
infrastructure. 
 

REFERENCES 
[1] A. Barrias, J. R. Casas, and S. Villalba, “A review of distributed 

optical fiber sensors for civil engineering applications,” Sensors, vol. 
16, no. 5, p. 748, 2016. 

[2] F. Ansari, “Practical implementation of optical fiber sensors in civil 
structural health monitoring,” Journal of intelligent material systems 
and structures, vol. 18, no. 8, pp. 879–889, 2007. 

[3] X. Ye, Y. Su, and J. Han, “Structural health monitoring of civil 
infrastructure using optical fiber sensing technology: A 
comprehensive review,” The Scientific World Journal, vol. 2014, 
2014. 

[4] T. Horiguchi and M. Tateda, “BOTDA-nondestructive measurement 
of single-mode optical fiber attenuation characteristics using Brillouin 
interaction: theory,” Journal of lightwave technology, vol. 7, no. 8, pp. 
1170–1176, 1989. 

[5] W. Li, X. Bao, Y. Li, and L. Chen, “Differential pulse-width pair 
BOTDA for high spatial resolution sensing,” Optics express, vol. 16, 
no. 26, pp. 21616–21625, 2008. 

[6] M. A. Soto, G. Bolognini, F. Di Pasquale, and L. Thévenaz, “Simplex-
coded BOTDA fiber sensor with 1 m spatial resolution over a 50 km 
range,” Optics letters, vol. 35, no. 2, pp. 259–261, 2010. 

[7] D. Ba et al., “Distributed measurement of dynamic strain based on 
multi-slope assisted fast BOTDA,” Optics express, vol. 24, no. 9, pp. 
9781–9793, 2016. 

[8] D. Zhou et al., “Slope-assisted BOTDA based on vector SBS and 
frequency-agile technique for wide-strain-range dynamic 
measurements,” Optics express, vol. 25, no. 3, pp. 1889–1902, 2017. 

[9] G. Yang, X. Fan, and Z. He, “Strain dynamic range enlargement of 
slope-assisted BOTDA by using Brillouin phase-gain ratio,” Journal 
of Lightwave Technology, vol. 35, no. 20, pp. 4451–4458, 2017. 

[10] H. Zheng et al., “Distributed vibration measurement based on a 
coherent multi-slope-assisted BOTDA with a large dynamic range,” 
Optics letters, vol. 44, no. 5, pp. 1245–1248, 2019. 

[11] C. Jin et al., “Scanning-free BOTDA based on ultra-fine digital 
optical frequency comb,” Optics Express, vol. 23, no. 4, pp. 5277–
5284, 2015. 

[12] C. Jin et al., “Single-measurement digital optical frequency comb 
based phase-detection Brillouin optical time domain analyzer,” Optics 
express, vol. 25, no. 8, pp. 9213–9224, 2017. 

[13] J. Fang, P. Xu, Y. Dong, and W. Shieh, “Single-shot distributed 
Brillouin optical time domain analyzer,” Optics Express, vol. 25, no. 
13, pp. 15188–15198, 2017. 

[14] D. Zhou et al., “Single-shot BOTDA based on an optical chirp chain 
probe wave for distributed ultrafast measurement,” Light: Science & 
Applications, vol. 7, no. 1, pp. 1–11, 2018. 

[15] Y. Dong et al., “150 km fast BOTDA based on the optical chirp chain 
probe wave and Brillouin loss scheme,” Optics letters, vol. 43, no. 19, 
pp. 4679–4682, 2018. 

[16] B. Wang et al., “High-performance optical chirp chain BOTDA by 
using a pattern recognition algorithm and the differential pulse-width 
pair technique,” Photonics Research, vol. 7, no. 6, pp. 652–658, 2019. 

[17] Y. Peled, A. Motil, and M. Tur, “Fast Brillouin optical time domain 
analysis for dynamic sensing,” Optics express, vol. 20, no. 8, pp. 
8584–8591, 2012. 

[18] Y. Dong et al., “High-spatial-resolution fast BOTDA for dynamic 
strain measurement based on differential double-pulse and second-
order sideband of modulation,” IEEE Photonics Journal, vol. 5, no. 3, 
pp. 2600407–2600407, 2013. 

[19] I. Sovran, A. Motil, and M. Tur, “Frequency-scanning BOTDA with 
ultimately fast acquisition speed,” IEEE Photonics Technology 
Letters, vol. 27, no. 13, pp. 1426–1429, 2015. 

[20] H. Zheng et al., “Polarization independent fast BOTDA based on 
pump frequency modulation and cyclic coding,” Optics express, vol. 
26, no. 14, pp. 18270–18278, 2018. 

[21] M. A. Soto, J. A. Ramirez, and L. Thevenaz, “Intensifying the 
response of distributed optical fibre sensors using 2D and 3D image 
restoration,” Nature communications, vol. 7, no. 1, pp. 1–11, 2016. 

[22] S. Zaslawski, Z. Yang, and L. Thévenaz, “On the 2D post-processing 
of Brillouin optical time-domain analysis,” Journal of Lightwave 
Technology, vol. 38, no. 14, pp. 3723–3736, 2020. 

[23] H. Wu, L. Wang, Z. Zhao, N. Guo, C. Shu, and C. Lu, “Brillouin 
optical time domain analyzer sensors assisted by advanced image 
denoising techniques,” Optics express, vol. 26, no. 5, pp. 5126–5139, 
2018. 

[24] H. Zheng, J. Zhang, H. Wu, N. Guo, and T. Zhu, “Single shot OCC-
BOTDA based on polarization diversity and image denoising,” Optics 
and Lasers in Engineering, vol. 137, p. 106368, 2021. 

[25] B. Wang, L. Wang, C. Yu, and C. Lu, “Long-distance BOTDA 
sensing systems using video-BM3D denoising for both static and 
slowly varying environment,” Optics express, vol. 27, no. 25, pp. 
36100–36113, 2019. 

[26] M. A. Soto, J. A. Ramírez, and L. Thévenaz, “Optimizing image 
denoising for long-range Brillouin distributed fiber sensing,” Journal 
of Lightwave Technology, vol. 36, no. 4, pp. 1168–1177, 2017. 

[27] M. A. Soto, J. A. Ramírez, and L. Thévenaz, “200 km fiber-loop 
conventional Brillouin distributed sensor with 2m spatial resolution 
using image denoising,” in Asia-Pacific Optical Sensors Conference, 
2016, pp. Th3A-4. 

[28] H. Wu et al., “Real-time denoising of Brillouin optical time domain 
analyzer with high data fidelity using convolutional neural networks,” 
Journal of Lightwave Technology, vol. 37, no. 11, pp. 2648–2653, 
2018. 

[29] Y. Chang, H. Wu, C. Zhao, L. Shen, S. Fu, and M. Tang, “Distributed 
Brillouin frequency shift extraction via a convolutional neural 
network,” Photonics Research, vol. 8, no. 5, pp. 690–697, 2020. 

[30] M. Tassano, J. Delon, and T. Veit, “Fastdvdnet: Towards real-time 
deep video denoising without flow estimation,” in Proceedings of the 
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 
2020, pp. 1354–1363. 

[31] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional 
networks for biomedical image segmentation,” in International 
Conference on Medical image computing and computer-assisted 
intervention, 2015, pp. 234–241. 

[32] K. Zhang, W. Zuo, and L. Zhang, “FFDNet: Toward a fast and 
flexible solution for CNN-based image denoising,” IEEE Transactions 
on Image Processing, vol. 27, no. 9, pp. 4608–4622, 2018. 

[33] B. Wang, L. Wang, N. Guo, Z. Zhao, C. Yu, and C. Lu, “Deep neural 
networks assisted BOTDA for simultaneous temperature and strain 
measurement with enhanced accuracy,” Optics express, vol. 27, no. 3, 
pp. 2530–2543, 2019. 

[34] B. Wang, N. Guo, L. Wang, C. Yu, and C. Lu, “Robust and fast 
temperature extraction for Brillouin optical time-domain analyzer by 
using denoising autoencoder-based deep neural networks,” IEEE 
Sensors Journal, vol. 20, no. 7, pp. 3614–3620, 2019. 

[35] J. Urricelqui, F. López-Fernandino, M. Sagues, and A. Loayssa, 
“Polarization diversity scheme for BOTDA sensors based on a double 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

7 

orthogonal pump interaction,” Journal of Lightwave Technology, vol. 
33, no. 12, pp. 2633–2638, 2015. 

[36] A. Lopez-Gil, A. Dominguez-Lopez, S. Martin-Lopez, and M. 
Gonzalez-Herraez, “Simple method for the elimination of polarization 
noise in BOTDA using balanced detection and orthogonal probe 
sidebands,” Journal of Lightwave Technology, vol. 33, no. 12, pp. 
2605–2610, 2014. 

[37] D. Kostadin, F. Alessandro, and E. Karen, “Video denoising by sparse 
3d transform-domain collaborative filtering,” in European signal 
processing conference, 2007, vol. 149. 

[38] M. Maggioni, G. Boracchi, A. Foi, and K. Egiazarian, “Video 
denoising using separable 4D nonlocal spatiotemporal transforms,” in 
Image Processing: Algorithms and Systems IX, 2011, vol. 7870, p. 
787003. 

[39] H. Ji, C. Liu, Z. Shen, and Y. Xu, “Robust video denoising using low 
rank matrix completion,” in 2010 IEEE Computer Society Conference 
on Computer Vision and Pattern Recognition, 2010, pp. 1791–1798. 

[40] M. Mahmoudi and G. Sapiro, “Fast image and video denoising via 
nonlocal means of similar neighborhoods,” IEEE signal processing 
letters, vol. 12, no. 12, pp. 839–842, 2005. 

[41] A. Davy, T. Ehret, J.-M. Morel, P. Arias, and G. Facciolo, “A non-
local CNN for video denoising,” in 2019 IEEE International 
Conference on Image Processing (ICIP), 2019, pp. 2409–2413. 

 
 
 
 

 
 




