Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/95175
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Mechanical Engineeringen_US
dc.creatorWang, Jen_US
dc.creatorRuan, Hen_US
dc.creatorWang, Xen_US
dc.creatorWan, Jen_US
dc.date.accessioned2022-09-14T08:32:32Z-
dc.date.available2022-09-14T08:32:32Z-
dc.identifier.issn0022-3093en_US
dc.identifier.urihttp://hdl.handle.net/10397/95175-
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.rights© 2018 Elsevier B.V. All rights reserved.en_US
dc.rights© 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.rightsThe following publication Wang, J., Ruan, H., Wang, X., & Wan, J. (2018). Investigating relaxation of glassy materials based on natural vibration of beam: A comparative study of borosilicate and chalcogenide glasses. Journal of Non-Crystalline Solids, 500, 181-190 is available at https://doi.org/10.1016/j.jnoncrysol.2018.07.071.en_US
dc.subjectChalcogenideen_US
dc.subjectDMAen_US
dc.subjectNon-exponential relaxationen_US
dc.subjectOptical glassen_US
dc.subjectViscosityen_US
dc.subjectYoung's Modulusen_US
dc.titleInvestigating relaxation of glassy materials based on natural vibration of beam : a comparative study of borosilicate and chalcogenide glassesen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage181en_US
dc.identifier.epage190en_US
dc.identifier.volume500en_US
dc.identifier.doi10.1016/j.jnoncrysol.2018.07.071en_US
dcterms.abstractThe present work investigates the validity of using the frequency and decay rate of free-free beam vibration, which are measured by the impulse excitation technique (IET), to characterize the viscoelastic properties of glass in the temperature range of glass transition. Based first on the classical Burgers model, we show that the temperature-dependent flow viscosity of borosilicate glass, calculated from the measured frequency and amplitude decay rate of the flexural vibration, agrees very well with the existing data. While for chalcogenide glass, the same calculation approach does not render the similar agreement, and the reason probably lies in non-exponential effects. To comprehend the IET data in the temperature range of glass transition, we propose a simplified theoretical framework for describing the transition from the solid-like to liquid-like viscoelastic behavior and discuss the cause of difference of the rheology behaviors of these two types of glass based on the formulation of non-exponential relaxation.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationJournal of non-crystalline solids, 15 Nov. 2018, v. 500, p. 181-190en_US
dcterms.isPartOfJournal of non-crystalline solidsen_US
dcterms.issued2018-11-15-
dc.identifier.scopus2-s2.0-85051026781-
dc.description.validate202209 bcvcen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberRGC-B2-1430, ME-0569-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThe Hong Kong Polytechnic Universityen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Investigating_Relaxation_Glassy.pdfPre-Published version1.98 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

84
Last Week
0
Last month
Citations as of Apr 14, 2025

Downloads

80
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

12
Citations as of Sep 12, 2025

WEB OF SCIENCETM
Citations

11
Citations as of Oct 10, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.