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1. Introduction 26 

Although glasses with constituents ranging from inorganic minerals and polymers to metals [1] 27 

have been extensively used in the modern world [2], the physical concept of glass transition remains 28 

a significant challenge in fundamental research [3]. The disordered atomic arrangement makes it 29 

difficult to understand physical properties based merely on microstructures and structural relaxation, 30 

leading to intricate variations in physical properties with temperature and time [4-6], which 31 

produces difficulty in predicting these properties following a certain thermal history. 32 

Though numerous theories have been proposed to understand the nature of glass[3], the 33 
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experimental characterization of glass transition is mainly based on the remarkable difference 1 

between the solid-like and liquid-like behaviors and their markedly different temperature 2 

dependence. An inflection point can be identified at the temperature-property curve, and defined as 3 

the glass transition point, Tg. Glass transition has been investigated by monitoring the temperature 4 

dependences of volume [7], enthalpy [8], refractive index [9], viscosity [10, 11], elastic modulus 5 

[12, 13] or other macroscopic properties [14]. It is not always possible to measure a physical 6 

property in situ in a continuous heating or cooling process. For example, the measurement of the 7 

refractive index, which is crucial for optical glasses, can only be carried out at room temperature 8 

based on quenched specimens [9]; for viscosity measurement,, different technologies must be 9 

employed in varying ranges: the rotation viscometer is used for low-viscosity measurement (η < 10
8 

10 

Pa∙s), the beam bending, fiber elongation, bar torsion, and penetration methods are applied for the 11 

high-viscosity range (η>10
8 

Pa∙s) [15], and the parallel plate method [16] is used for the 12 

intermediate viscosity range (10
4
~10

10
 Pa∙s). Kostal et al. [17] summarized 11 methods for 13 

measuring glass viscosity, which are all for isothermal measurement; that is, they are unsuitable for 14 

capturing the transient viscosity change during the heating/cooling process. Mauro et al. [18] 15 

modified the beam bending method to measure non-equilibrium viscosity which may probe the time 16 

dependence of viscosity at a constant temperature. Sellier et al. [19] proposed that the shear 17 

relaxation modulus and structural relaxation function could be measured by in situ monitoring 18 

variation of the glass plate thickness, which however has not been experimentally validated. In the 19 

past, differential scanning calorimetry (DSC) and dilatometry have been the most frequently 20 

adopted in situ methods for characterizing glass transition, and monitor changes in enthalpy and 21 

volume, respectively, during a continuous heating/cooling process [6]. Recently, the measurement 22 

of elastic modulus becomes another in situ method, which has been applied in studying different 23 

kinds of glasses [12, 13, 20]. 24 

Using the change in elastic modulus with temperature may be advantageous for studying glass 25 

transition, because: (i) the elastic modulus changes far more significantly than enthalpy and volume 26 

at a temperature near Tg, and (ii) the elastic modulus can be determined almost instantaneously (at 27 

very high frequency) using photoacoustic techniques[21]  or more cost-effectively the impulse 28 

excited technique (IET) [22]. The elastic modulus obtained from an IET experiment is very weakly 29 

dependent on the vibration frequency, which can be considered as the instantaneous modulus, and 30 

therefore has been used to determine the glass transition point of various glasses [20] . Recently, Liu 31 

et al. [12] has further used IET to characterize the time-temperature dependence of the Young’s 32 

modulus and parameterize the Tool-Narayanaswamy-Moynihan parameters.  33 

In addition to the elastic modulus, the exponential decay rate of the flexural vibration, hereafter 34 

called decay rate for shorthand, can also be determined in IET experiments. The decay rate, 35 
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generally determined after Fourier analysis of the high frequency IET data (10
3
 ~ 10

4
 Hz), is 1 

equivalent to the logarithmic decrement of amplitude determined in the conventional low-frequency 2 

torsion pendulum method [23] and can also be used to understand dynamic behavior of materials 3 

[24]. The temperature dependence of the decay rate may peak at some temperatures, which renders 4 

some structural information [25] or indicates phase transformation [26]. It was also shown that after 5 

glass transition occurs, the decay rate will surge owing to the quick reduction of viscosity[13]. 6 

However, the quantitative relation between decay rate and stress relaxation is still not clear, owing 7 

partly to the rather large scattering of decay rate data in their work and, more fundamentally, the 8 

lack of a proper viscoelastic model. 9 

In this work, we make further use IET for studying relaxations in glasses, and focus on the 10 

information that can be extracted from the decay rate. In Section 2 we report the experimental 11 

results of modulus and decay rate of typical borosilicate and chalcogenide glasses for optical 12 

application. In Section 3, the applicability of the classical Burgers model is first examined to check 13 

whether the correct flow viscosity can be determined from the decay rate. In Section 4 a theoretical 14 

framework is developed to describe the transition from the solid-like to liquid-like viscoelastic 15 

behavior and the non-exponential effects are discussed. All the remarks are concluded in Section 5. 16 

 17 

2. Experiments and results 18 

 19 

Fig. 1 Schematics of IET: (a) the setup of impulse excitation technique, and (b) the typical acoustic signal 20 

and its energy spectrum. 21 

 22 

Fig. 1(a) displays the schematics of the IET experiment. Based on the Euler-Bernoulli beam 23 

theory, two motionless points (x = 0.224, 0.776L, where L is the beam length) exist in the first-order 24 

flexible vibration mode of an elastic free-free beam. These two points, named nodal points in Fig. 25 

1(a), are located where the beam is hung with thin metal wires, approximately rendering the 26 

free-free beam boundary condition. Once the impact bar strikes the specimen, a damped acoustic 27 

signal will be recorded owing to the beam vibration (inset of Fig. 1(b)), which can be converted by 28 
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Fourier transform to the energy spectrum shown in Fig. 1(b). For a damped system vibrating at the 1 

angular frequency d  in the form of  ( ) exp +i dy t t t    with β, i, t being the decay rate, 2 

imaginary unit, and time, respectively, the peak center of the Fourier strength is considered as 3 

natural frequency 0  ( 2 2 2

0 d    ) and the half width at half maximum (HWHM) of the peak is 4 

considered as . Based on the Euler-Bernoulli beam theory, the natural frequency of a pure elastic 5 

free-free beam is expressed as: 6 

  4

0

4

E n zE LI   , (1) 7 

Where E0, IZ, and ρ are the Young’s modulus, second moment of area, and linear density, 8 

respectively; λn is the modal parameter satisfying cos cosh 1n n   . For the first-order flexible 9 

vibration mode of a free-free beam, 
1 4.73  . Based on the theory of one-DOF vibration, the 10 

Fourier transform energy spectrum will peak at the frequency ω0 and the decay rate β is 11 

approximately the half width at half maximum (HWHM) of the peak [27], as illustrated in Fig. 1(b). 12 

In the case where  is significantly smaller than ω0 for a solid, 
0d E     is generally 13 

assumed in practice. This notion, namely that the frequency at the energy spectrum peak is 14 

approximately the pure elastic beam natural frequency, is adopted in IET in order to determine the 15 

natural frequency of the beam and decay rate, which are converted into Young’s modulus using Eq. 16 

(1). In case that the beam is too short or too thick, a correction factor [28] should be multiplied by 17 

Young’s modulus calculated from Eq. (1), which is based on the Timoshenko beam theory [29].  18 

 19 

Table 1 Dimensions and glass transition temperatures 20 

Glass 
Size / mm

3 

(±0.01mm) 

Mass / g 

(±0.1mg) 

Tg 

(Viscosity) 

Tg 

(Dilatometry) 

Tg  

(Young’s modulus) 

L-BSL7 40.1×10.1×1.52  1.4644 488 C(AP) 498 C 484 C (±1C) 

L-BAL42 40.08×7.98×1.97 1.9471 494 C(AP) 506 C 497 C (±1C) 

IRG202 40.03×8.02×2.44 3.4572 288C[13] 282C 280C (±1C) 

IRG206 40.07×8.02×2.45 3.6610 182C[30] 180C 177C (±1C) 

 21 

In the experiment, we used the IET system HT1600 from IMCE, Belgium. All the units shown 22 

in Fig. 1(a) are installed in a closed furnace for studying the temperature dependence. Four types of 23 

glasses listed in Table 1 are measured in the present work, of which two are borosilicate glasses, 24 

L-BSL7 (SiO2(69.13)-B2O3(10.75)-Na2O(10.40)-K2O(6.29), wt.%) [31] and L-BAL42 25 


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(SiO2(40-50)- BaO(20-30)-B2O3(2-10)-Al2O3(2-10)-ZnO(2-10)-Others, wt.%) [32] from OHARA 1 

Corporation; and the others are chalcogenide glasses, IRG202(Ge22Se58As20, mol%) and 2 

IRG206(Se60As40, mol%) from Hubei New Hua-Guang Information Materials Co., Ltd. In the 3 

measurement, nitrogen gas is purged into the furnace to protect the sample from oxidation 4 

(especially for the chalcogenides). The experimental errors could arise from dimensional (0.01 5 

mm) and weight (0.1mg) measurements as well as the temperature measurement ( 0.5 C). 6 

Considering these effects, the Young’s modulus determined from Eq. (1) could deviate from the 7 

actual magnitude within about  2 %. In addition, the measurement of decay rate is affected by the 8 

condition of support, which will be discussed later in the last of Section 3.1. 9 

 10 

 11 

Fig. 2 Energy spectrums of the acoustic signal at different temperatures for L-BAL42 12 

 13 

Fig. 2 displays the energy spectra of the acoustic signal at different temperatures from the 14 

L-BAL42 measurements, which illustrates that the peak position shifts to the left with increasing 15 

temperature, indicating that the modulus decreases with increasing temperature. The height of the 16 

peak reduces with temperature increase, which is owing to the increase of the decay rate. In the 17 

inset of Fig. 2, the spectra are normalized by the height and frequency of the respective maxima, 18 

indicating that the peak becomes more obtuse and the HWHM increases with the temperate rise, 19 

thereby further demonstrating the increase in decay rate. Using these clear-cut signals, we can 20 

obtain high-quality modulus and decay rate data for a glass specimen.   21 

 22 
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     1 

Fig.3 Variations in Young’s modulus and decay rate with temperature for borosilicate glasses: (a) L-BSL7 and (b) 2 

L-BAL42. The red rhombuses and blue circles indicate Young’s modulus and decay rate respectively. The relative 3 

error in determining Young’s is ±2.14%. 4 

 5 

The variations in the Young’s modulus E and decay rate β of glass L-BSL7 are illustrated in 6 

Fig. 3(a). Along the Young’s modulus decline with temperature, a distinct change in the decreasing 7 

rate can be identified at approximately 484C. This temperature can be regarded as the glass 8 

transition point determined from the modulus variation. It should be noted that this temperature is 9 

approximately 14C lower than the Tg determined by dilatometry (498C), according to data 10 

provided by the manufacturer. Although the glass transition point Tg can be measured by various 11 

methods, it should be noted that the consensus on the definition of Tg is based on the particular 12 

magnitude of viscosity. Angell et al. [10, 11, 33] suggested that the flow viscosity   is 10
12 

Pa∙s at 13 

the glass transition temperature, which hereafter is referred as Tg,v. In the glass industry, the 14 

Annealing Point (AP) is generally measured, at which the viscosity could be slightly larger than 15 

10
12

 Pa∙s (typical magnitude is 10
12.2

 Pa∙s). Since AP is very close to Tg,v, it is directly used here to 16 

compare with other Tg measurement. The AP of L-BSL7 is 488C, only 4 C higher than the Tg 17 

determined based on modulus variation. This result demonstrates that measuring the modulus 18 

change is also an effective approach to investigating glass transition. Fig. 3(b) illustrates the 19 

variations in Young’s modulus and decay rate of the optical glass L-BAL42. The Tg determined 20 

from the modulus variation is 497C, which also agrees strongly with the Tg,v of L-BAL42 (494C, 21 

AP).  22 

The decay rate data fluctuate far more significantly than the modulus data. Therefore, we fit 23 

these with the equation:  24 

  1 2 3 4expp T p p p T    ,  (2) 25 
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where p1~p4 are fitting parameters that are listed in Table 2. This equation consists of the linear and 1 

exponential functions of temperature. It is noted that the low-temperature (below Tg) variation of 2 

decay rate is essentially linear, as shown in Fig. 3. Therefore, it is expected that the exponential 3 

term in Eq. (4) should be caused by the swift decrease of flow viscosity when the temperature is 4 

higher than Ig. In Fig. 3, a sharp increase in the decay rate can be observed. Intuitively, it would be 5 

expected that such a drastic change in decay rate occurs near Tg; however, this is not the case, as 6 

indicated in Fig. 3(a) and (b) by the vertical dashed line. In Fig. 3, the apparent sharp increase in 7 

decay rate occurs at a temperature that is at least 10C higher than the Tg determined from the 8 

modulus variation. This deviation can be understood based on the Maxwell model provided in 9 

section 3.1. Consider the Maxwell flow viscosity in the range of 10
10

 ~ 10
12

 Pa∙s. The decay rate 10 

contributed by it, given by 2 ME  (where ηM is the flow viscosity), is within the range of 0.01 11 

~ 1 s
-1

, which remains very small compared other damping effects (for example, Kelvin damping of 12 

the material and damping due to suspension wires).  13 

 14 

Table 2 The parameters of decay rate in Eq. (2)  15 

Eq. (4) p1 / s
-1 

p2 / C p3 / s
-1

 p4 /(s C)
-1

 

L-BSL7 1.0E-25 8.8 18 0.2 

L-BAL42 5.0E-32 7 -13 0.36 

IRG202 7.4E-5 24.05 2.07 0.0484 

IRG206 1.58E-7 10.26 -0.55 0.1194 

 16 

 17 

      18 

Fig.4 Variations of Young’s modulus and decay rate with temperature for chalcogenide glass: a) IRG202 and b) 19 

IRG206. The red rhombuses and blue circles indicate Young’s modulus and decay rate respectively. The relative 20 

error in determining Young’s is ±1.46%. 21 



8 
 

 1 

The measured results for chalcogenide glasses are plotted in Fig. 4. The variations in Young’s 2 

modulus of the chalcogenide glass resemble those of borosilicate glass, and the glass transition 3 

points are determined as 280C and 177C for IRG202 and IRG206, respectively. As opposed to the 4 

borosilicate glass cases, these two temperatures are very close to the Tg measured by dilatometry, 5 

namely 282C and 180C for IRG202 and IRG206, respectively. The same experiment on IRG202 6 

was conducted by Bourhis et al. [13], who demonstrated that the Tg measured by Young’s modulus 7 

was between 270~280C, consistently with our measurement. It should be noted that Bourhis et al. 8 

[13] used silver paint to protect the sample from oxidation (whereas we simply purge nitrogen), 9 

which may affect the modulus measurement, leading to a slightly different Tg. The glass transition 10 

temperatures of the four glasses determined from the variations in modulus, viscosity, and volume 11 

expansion are summarized in Table 1. For borosilicate glasses, the Tg determined from the modulus 12 

variation is consistent with Tg,v. In contrast, the Tg,v of either chalcogenide is higher than the Tg 13 

measured by IET and dilatometry.  14 

The decay rate variations of the two chalcogenide glasses also differ from those of the two 15 

borosilicate glasses. It is surprising that the fluctuations in the decay rate data of chalcogenide 16 

glasses are significantly smaller than those of borosilicate glasses, as illustrated in both Figs. 4(a) 17 

and (b), the transition from the slow and linear increase to the precipitous decay rate rise is far less 18 

abrupt than that of borosilicate glasses, and the transition occurs almost exactly at the Tg, as 19 

indicated by the vertical dashed lines in Figs. 4(a) and (b). The decay rate is also fitted by Eq. (2) 20 

and the parameters are listed in Table 2. 21 

 22 

3. Analyses: The relation between viscosity and decay rate 23 

3.1 Vibrations of a viscoelastic beam with free-free ends 24 

In this study, we attempt to use the vibration frequency and decay rate from IET experiments to 25 

understand the relaxation of glassy materials. Therefore, the relations between the measured 26 

variables and physical properties of the specimens are required. Numerous studies have been 27 

conducted on the vibration of a viscoelastic beam, as summarized by Adhikari [27]; however, most 28 

of them can only be solved with certain viscoelastic models. In this paper, we introduce a general 29 

framework for any viscoelastic models, for smoothing the following discussion. The issue can be 30 

started from a general dynamic stress-strain relation, expressed as: 31 

    0
0

d
d

d

t

t E R t


  


  , (3) 32 
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where  and  are the time-dependent normal stress and strain along the axial direction of the beam, 1 

and R(t) is the relaxation (or memory) function of time t. Based on the Euler-Bernoulli beam theory, 2 

the bending moment is 3 

 d
A

M y A  ,  (4) 4 

where A is the beam cross-section area, and y is the coordinate of a point at the cross-section from 5 

the neutral axis and along the deflection direction (see Fig. 1(a)). Allowing w(x, t) to be the beam 6 

deflection at the axial coordinate x and time t, the governing equation of vibration of the 7 

Euler-Bernoulli beam is: 8 

  
2 2

2 2
, ,

M w
F x t

x t


 
 

 
  (5) 9 

where  ,F x t  is the external force. Using the relationship 
2

2

w
y

x






, based on the plane section 10 

assumption, Laplace transforms of Eqs. (4~6) are given as: 11 

 

 

 

 

2

2

2
2

2

ˆˆ

ˆˆ

ˆ
ˆˆ ,

z

H s f

w
M H s I g

x

M
s w h F x s

x

 

 


  



 



  



,  (6)(7)(8~10) 12 

where the overhead “^” represents the corresponding variable after Laplace transformation, 13 

   0
ˆH s E R s s  is the generalized Young’s modulus in the Laplace domain, s is the Laplace 14 

variable, 
0 0

ˆ( )
t

sE R sf 


   , d
A

g y f A  , and  
0 0t t

w w th s
 

     are all due to initial beam 15 

deflection and deflection velocity. 16 

Considering the case in which the initial deflection and velocity are both zero and the beam is 17 

excited by an external impulse force      , 2pF x t I x L t    at the middle span, the initial 18 

conditions can be expressed as follows: 19 

 
 

   

0 0 0
0

ˆ , 2

t t t

p

w w t

F x s I x L





  
     


 

.  (9) 20 

Therefore,   0f g h    and Eq. (10) is recast after substituting Eq. (9) into Eqs. (8~10) as: 21 

    
4 2

2

4 2

ˆ ˆ
2z p

w w
H s I s I x L

x x
 

 
  

 
.  (10) 22 

Now, we consider the modal response and assume that 23 
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      
1

ˆ , m m

m

w x s X x s




  ,  (11) 1 

where         ( ) cos ch sin shm m m m m mX x C x L x L p x L x L          are the orthogonal 2 

modal function of the free-free beam, 
cosh cos

sin sinh

m m

m m

p
 

 





, Cn is the normalization factor letting 3 

 2

0
d 1

L

nX x x  , and  m s  is the undetermined response function. Substituting Eq. (11) into Eq. 4 

(10) leads to: 5 

 
 

 
 

   
 

 

4 2

4
1

2pm

m m m

m z z

I x LX x s
s X x s

x H s I H s I





  
    

 
 .  (12) 6 

Using the orthogonality and normality of Xm(x), Xn(x) can be multiplied with both sides of Eq. (12) 7 

and these can be integrated with respect to x, resulting in: 8 

  
 

   
4 2

/ 2

/

p n

n

z n

I X L
s

H s I L s 
 


  (13) 9 

It should be noted that the denominator of the right-hand side of Eq. (13) is the characteristic 10 

function of the dynamic system. Among the roots of the equation: 11 

    
4 2/ 0z nH s I L s     (14) 12 

those with negative real parts, expressed as s = −β+iωd, govern the damped vibration. 13 

The schematics of several viscoelastic models are provided in Fig. 5, for which the constitutive 14 

stress-strain relations, derived decay rates, and free vibration frequencies are listed in Table 2. Note 15 

that we denote the viscosity of the dashpot connected in parallel with a spring as ηK, which 16 

represents the Kelvin solid damping effect. Furthermore, M denotes the viscosity of the dashpot in 17 

series with a spring, which is the flow (or Maxwell) viscosity generally referred to in the glass 18 

research community. In the case of beam vibration, the extensional viscosity is used, which should 19 

be converted into shear viscosity for comparison with other viscosity measurements. The ratio 20 

between the shear and extensional viscosity of Newton liquids is known as the Trouton ratio, with a 21 

value of approximately 3, as proposed by Trouton [34]. This value has subsequently been validated 22 

by many experiments [35, 36]; thus, in this paper, we use the Trouton ration of 3. 23 
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 1 

Fig. 5 Representations of viscoelastic models: (a) Maxwell model, (b) Kelvin model, (c) Burgers model, (d) 2 

Zener model [37] and (e) Jeffery model [38]. 3 

 4 

Table 3. Comparison of different viscoelastic models. ( , ,
ii i E i K M   ) 5 

Type ( )H s    
0  

Maxwell  1/ 1 ( )ME s    1 2 M  
E  

Kelvin  1 K s E  2 2E K   E  
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L
M




 . 6 

 7 

The above theoretical investigations merely consider the ideal case of a free-free beam. 8 

However, it is not possible for a beam to be completely free, which may affect the damping 9 

behaviors in IET[25]. If the supports exert a damping force on the beam, we have: 10 

   1 2
1 2

( , ) ( , )
, ( 2) ( ) ( )p

w N t w N t
F x t I x L c x N c x N

t t
  

 
     

 
  (15) 11 

where c is the damping coefficient, and N1 and N2 are the support positions. Thus, the response 12 

function is recast as: 13 

  
 

   
4 2

/ 2 /

/

p n n

n

z n

I X L
s

H s I L s sQ



 
 

 
,  (16) 14 
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where        1 1 2 2

1 1

n m n m

m mn

c
Q X N X N X N X N



 

 

 
  

 
  , and    

0
d

L

n n nX x X x x   . It is 1 

learned from Eq. (13) that when N1 and N2 are located directly on the two fixed points, X1(N1) = 2 

X2(N2) = 0, which results in Q = 0, and the supported points have no effect on the first-order 3 

vibration as required. However, it is barely possible to place the supporting wires exactly on the two 4 

nodes; therefore, the effects of support wires are involved. Based on the models involving the 5 

Kelvin part, which has the term Ks  in H(s), the effects of support provided by sQ will be 6 

indistinguishable from the contribution of the term  
4

K zs I L  . 7 

3.2 Flow viscosity of borosilicate glass based on Burgers Model 8 

It is well known that the decay rate results from the external and internal dissipation 9 

mechanisms [13], which can be modeled as a viscous effect. However, the conversion from the 10 

measured decay rate to the flow viscosity of glassy materials is rarely reported in the available 11 

literature. A possible reason for this is that the fundamental models, namely the Maxwell (Fig. 5(a)) 12 

and Kelvin (Fig. 5(b)) models, cannot be directly applied in order to describe the full range of 13 

temperature and time dependence, and those complex models are difficult to use owing to some 14 

undetermined fitting parameters. Scherer [39] suggested that the simplest viscoelastic model for 15 

glass is the Burgers model, namely a series combination of a Maxwell and Kelvin unit, as illustrated 16 

in Fig. 5(c). In studies on the stress relaxation or creep behavior of borosilicate glasses, the Burgers 17 

model provides an effective description of experimental results [40-42]. However, four 18 

undetermined parameters exist in the Burgers model, while we have only two measured variables, 19 

namely frequency and decay rate, in the IET experiment. Thus, additional assumptions are 20 

necessary so that the glass flow viscosity can be assessed from the IET measurements. Fortunately, 21 

certain characteristics of the Burgers model can aid in determining the flow viscosity M  from the 22 

decay rate β.  23 

When the Maxwell viscosity M   and Kelvin 0K  , the Burgers model degenerates 24 

to pure elastic cases, and the effective modulus is: 25 

 M K
B

M K

E E
E

E E



.  (17) 26 

where EM and EK are the moduli of the Maxwell and Kelvin units, respectively. When the damping 27 

or viscous effect is negligible, the modulus measured by IET should be the effective modulus EB.  28 

When the temperature is low, M   and the Maxwell viscosity effect vanishes. Thus, the 29 

decay rate β is only contributed by the Kelvin viscosity; that is: 30 
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  K M    .  (18) 1 

It is determined that βK is the function of the modulus ratio E M KE E  , but is not dependent on 2 

the magnitude of either modulus, as exemplified in Fig. 6(a). Moreover, from Fig. 6(b), it can be 3 

determined that βK is proportional to the magnitude of K  if E  is fixed.  4 

 5 
Fig. 6 Variations of decay rate on (a) modulus ratio and (b) Kelvin viscosity using specimen L-BAL42. 6 

In the case of finite M , (β − βK) represents the contributions from the Maxwell viscosity and 7 

the coupled effect of the Maxwell and Kelvin units. The Burgers model degenerates to the Maxwell 8 

model when 0K  . Therefore, the Maxwell viscosity contribution (refer to the decay rate derived 9 

from the Maxwell model, as shown in Table 3) can be defined as: 10 

  0 0.5 /M K B ME        (19) 11 

We then define the variable   /K M      in order to determine the coupling effect. Fig. 12 

7 illustrates the variation of |α − 1| with M . It is found that the value of α is very close to 1 (error 13 

less than 1%) for varied with K  and M , and when E is within the range of 10
-2

 and 10
2 

(note: 14 

in the fitting of experiments, for example, Refs. [40, 41], E is in the range of 0.1 ~ 10). Because of 15 

this weak coupling effect, the decay rate can be expressed as K M    . Furthermore, the flow 16 

viscosity can be determined as  0.5 0.5M B M B KE E       if the Kelvin contribution K 17 

is known. 18 
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 1 

Fig. 7 1   with varying Kelvin viscosity for L-BAL42 when  is near 10
12

 Pa·s. 2 

We conceive an approach to determine the Kelvin viscosity variation with temperature. At a 3 

low temperature, the atomic system vibrates in the potential well, while at a high temperature, the 4 

system can jump out of the well to a new configuration [39]. The former situation corresponds to 5 

the Kelvin model, and the latter should at least be modeled by the Maxwell model. We assume that 6 

the relation between K and temperature can be extrapolated to a temperature higher than Tg. 7 

Furthermore, the difference between the actual decay rate and that extrapolated from the Kelvin 8 

model should lead to the Maxwell viscosity. As the decay rate results can be fitted effectively by Eq. 9 

(4), in which the linear terms pertain to the low-temperature variation and the exponential describes 10 

the precipitous rise at a high temperature, the exponential term  1 2expp T p  in Eq. (2) can be 11 

directly used to calculate the Maxwell viscosity M. It should be noted that Young’s modulus is 12 

involved in the viscosity calculation, for which the experimental results are used directly. 13 

     14 

Fig. 8 Shear viscosities determined using Burgers model and plotted using the Angell plot[10] for glass (a) 15 

M
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L-BSL7 and (b) L-BAL42, in which the solid blue lines are calculated from decay rate based on the Burgers 1 

model. 2 

 3 

The calculated shear viscosity is exhibited using the Angell plot, as illustrated in Figs. 8(a) and 4 

(b) for L-BSL7 and L-BAL42, respectively. The strain point (StP), Tg,v, and softening point (SP) are 5 

defined at viscosities of 10
13.5

, 10
12

, and 10
6.65

 Pa·s, respectively, measured using a viscometer and 6 

provided by the manufacturer. The obtained viscosity curves are almost linear and well match the 7 

low-temperature (Tg,v and StP) viscosity data provided. It should be noted that the IET data is only 8 

available at approximately 550C (Tg /T ~ 0.93 K/K) for both glasses, at which the viscosity is 9 

approximately 10
9
 Pa·s. When the viscosity is lower than this value, the acoustic signal has been too 10 

weak to obtain a clear energy spectrum peak. Therefore, we extrapolate the viscosity-temperature 11 

curve to a higher temperature. If the decay rate fitting equation is still used, the extrapolation leads 12 

to a rapid viscosity reduction and a deviation from the Vogel-Fulcher-Tamman law. In Fig. 8 (a) 13 

and (b), the fragilities can be determined to be 38 and 47 for L-BSL7 and L-BAL42, which are 14 

consistent with the measurements of Smedskjaer et al.[43]. If the results are linearly extrapolated to 15 

the higher temperature regime, the estimated viscosity would be too low as indicated by the 16 

deviation from the softening point. This indicates the non-Arrhenius character of borosilicate 17 

glasses, which can be inferred from the large fragility. Based on these observations, we conclude 18 

that the decay rate obtained from the IET experiments can effectively be used to calculate the flow 19 

viscosity borosilicate glass based on the Burgers model. 20 

3.3 Flow viscosity of chalcogenide glass based on the Burgers model 21 

 22 
Fig. 9 Shear viscosities determined using Burgers model and viscometer for (a) IRG202 and (b) IRG206 23 

The successful application of the Burgers model to the borosilicate glasses inspires us to 24 

https://arxiv.org/pdf/0704.2975
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conduct a similar treatment on the decay rate data of chalcogenide glasses. The obtained viscosity is 1 

plotted in Fig. 9, in which the viscosities measured by a viscometer [13, 30] are also displayed. 2 

However, the comparison is disappointing because the viscosities obtained from the decay rates 3 

based on the Burgers model are significantly smaller than those from the viscometer, although the 4 

difference reduces with temperature. There may be two reasons for this disagreement: firstly, the 5 

linear extrapolation of the relation between the Kelvin viscosity K and temperature to a 6 

temperature higher than Tg may be incorrect for chalcogenide glasses; and secondly, the Burgers 7 

model may be inapplicable for describing chalcogenide glasses. In a recent study [44], it was 8 

proposed that chalcogenide glass may be non-flowing under small stress, even when the 9 

temperature is higher than the SP, indicating that the Burgers model may be invalid. A study by 10 

Bernard et al. [40] in 2007 demonstrated that, although the stress relaxation of the Te–As–Se system 11 

can be fitted by the Burgers model, the obtained parameters fail to describe the strain-recovery 12 

process. Furthermore, later work [45] illustrated that the Burgers model cannot model the relaxation 13 

in both short and long periods of Te–As–Se and Ge-Se glasses. These studies suggest that the 14 

viscoelastic behaviors of chalcogenide glass are fundamentally different from those of borosilicate 15 

glass, which needs further discussion (in Section 4.2). 16 

 17 

4. Discussions 18 

4.1 Simplified model for transition from solid-like to liquid-like behaviors 19 

The above analysis raises the more fundamental question of how to select a viscoelastic model 20 

for describing viscoelastic behavior in the glass transition temperature range, and what the physical 21 

picture is if a viscoelastic model is selected. Without a clear physical picture, the fundamental 22 

difference between the borosilicate and the chalcogenide glasses is still vague. In order to answer 23 

these questions, we first establish a minimal model to describe the effects of glass transition on the 24 

stress-strain relation of a glassy material, expressed as Eq. (3). 25 

We begin with a mosaic picture of glass transition [46], whereby a glass may be simplified into 26 

many small patches (that is, the atomic subsystem), which can spontaneously change their 27 

configuration when the temperature is elevated to the glass transition range. Assume that such a 28 

configuration change occurs within the infinitesimal time span [, +d] with a probability Jd, 29 

where J is the transition rate, and that such a transition leads to a total loss of memory and zero 30 

stress at the transition instant . We then follow the behavior of a single patch, which may or may 31 
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not change its configuration over time [0, t]. The details of these two scenarios are described as 1 

follows. 2 

(1) The patch does not change its configuration during the time [0, t] with a probability P(t). 3 

As the configuration does not change, we assume that the mechanical behavior should be solid-like, 4 

represented by the relaxation function R0(t).  5 

 (2) The patch does not change its configuration during the time [0, ], and then changes at the 6 

instant . The joint probability is then P()Jd, and the total probability of this behavior, when the 7 

instant  runs from 0 to t, is  
0

d
t

P J  . It should be noted that the patch changes its 8 

configuration at  and can change further, multiple times, during the time span [, t], which depicts 9 

structural relaxation and liquid-like behavior [47]. Therefore, a new relaxation function, different 10 

from the above solid-like function R0(t), must be assumed. We assume that this relaxation function 11 

is identical to that of the entire system R(t), based on the rationale that the response of a single patch 12 

over a sufficiently lengthy period (time average) should be identical to the average response of 13 

many patches (ensemble average).  14 

The summation of the above two scenarios leads to the average stress at time t, which reads:  15 

 

   

       

0
0

0 0 0
0 0

d
d

d

d d
d d d
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t t t

t E R t

P t E R t P E R t J
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
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

 
     

 

 

 
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 



  

,  (20) 16 

The summation rule of probability requires    
0

d 1
t

P t P J   , for which the solution is 17 

    expP t Jt  .  (21) 18 

By substituting Eq. (21) into (20) and changing the integration order of   and  , we obtain: 19 

 

     
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0
0 0 0 0

0
0 0

d d d
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t t
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R t e d R t e d






  
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  

 
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 

 

 

 
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 
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 

,  (22) 20 

which can be further simplified as: 21 

    0
0 0

d d

d d

t t
Jt JR t e d R t e d 

   
 

     .  (23) 22 

We then apply Laplace transformation to Eq.(23), rendering: 23 
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    0
ˆ ˆR s R s J  .  (24) 1 

If the material is purely elastic before glass transition (no viscous effects), we have 0 ( ) 1R t   2 

leading to 0
ˆ ˆ( ) ( ) 1/ER s R s s  . With a non-zero transition rate J, the relaxation function becomes 3 

 ˆ ˆ( ) ( ) 1 ( )ER s R s J s J    ,  (25) 4 

which represents the Maxwell model. If the material is the Kelvin solid prior to glass transition, 5 

described by 0
ˆ ˆ( ) ( ) 1/K KR s R s s    , the memory function following glass transition is: 6 

  ˆ ˆ( ) ( ) 1K KR s R s J s J      ,  (26) 7 

which is the Zener model, as illustrated in Fig. 5(d). The solution in Table 3 demonstrates that the 8 

decay rate derived from the Zener model is the sum of those provided by the Kelvin and Maxwell 9 

models, which is identical to the above calculation derived from the Burgers model. It should be 10 

noted that no coupling term of  and  exists in the decay rate expression from the Zener 11 

model. However, with the Burgers model, these two viscous units are weakly coupled when the 12 

ratio of two elastic constants  is within the range of [10
-2

, 10
2
]. Moreover, the Kelvin damping 13 

assumed in the model, manifested as the non-vanishing decay rate at a low temperature, may not 14 

arise from the material response alone. The hanging wire causes the same damping effect, which 15 

cannot be distinguished from the Kelvin damping of the materials, as analyzed in section 3.1. 16 

However, as the coupling between the Kelvin damping and flow viscosity is very weak (or 17 

vanishing based on the Zener model), the flow viscosity determined from the decay rate data is 18 

therefore sensible for borosilicate glasses.   19 

 Before closing this discussion, a brief discussion on the Jeffery model (Fig. 5(e)) which is also 20 

widely used to study slow relaxation is needed. The Jeffery model is very similar to the Zener 21 

model, containing three parameters, which can also be derived from the Burger’s model when E  22 

is very large. Based on the decay rate formulae provided in Table 3, The Jeffery model renders 23 

   21 22Jeffery

M K K       , which is smaller than that based on the Zener model with the 24 

same   and K ,  21 2Zener

M K     . When K  is small (in most cases of glass it is), the two 25 

types of relaxation time are almost the same. 26 

 27 

4.2 Effect of non-exponential relaxation 28 

 For the chalcogenide glasses, greater consideration is required, as their relaxation behaviors are 29 

K M

E
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apparently more complex than those of borosilicate glasses. In the Burgers model, the Maxwell unit, 1 

which describes an exponential relaxation, may be too simplistic to capture the relaxation behavior 2 

in chalcogenide glass, leading to the apparent disparity as illustrated in Fig. 9. Therefore, the 3 

non-exponential relaxation should be considered. 4 

The most important feature of a non-exponential relaxation is that the loss spectrum of the 5 

corresponding linear response, expressed as    ˆi 1s sR s   [48, 49] , becomes broader than that 6 

of an exponential decay. This is known as the stretching phenomenon, which may be fitted by 7 

various expressions [49]. The most widely adopted time-domain relaxation function is probably the 8 

Kohlrausch-Williams-Watts (KWW) function     exp
KWWB

R t t   [50], where  is the 9 

relaxation time and BKWW is the stretched exponent, which is generally smaller than one. The 10 

Laplace transform of the KWW function is nontrivial; therefore, other Laplace domain expressions 11 

of the linear response function χ(is) were proposed, which is more convenient for fitting the 12 

stretched loss spectrum. These expressions are also more convenient for studying the beam 13 

vibration in this work, as the response function Eq. (16) is also expressed in the Laplace domain. In 14 

the following, we proceed to use the Cole-Davidson (CD) [51] expression:  
 

1
i

1
CD

CD B
s

s






, 15 

where BCD is also a stretched exponent. Using the least-squares method, Lindsey and Patterson [52] 16 

provided the relation between BCD and BKWW: 17 

 
CD

CD

CD

KWW

CD

0.970 0.144, 0.2 0.6

0.683 0.316, 0.6 1.0

B

B

B B
B

B B

  
 

  

 , (27) 18 

which can then be used to convert BCD into BKWW. 19 

The CD expression leads to the relaxation function[49]:  20 

  
 

1 1ˆ 1
1 CDB

R s
s s

 
  

  

. (28) 21 

The viscosity measurement; for example, using the beam bending method for the viscosity range in 22 

this work, is conducted in the time domain. This is the process of obtaining the strain rate under a 23 

constant stress 0, which is expressed as 24 

 
 

0d

dt t




 .  (29) 25 

The strain rate is usually not a constant in a short time but levels off after a sufficient time, and a 26 
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steady viscosity value is then obtained. Using the Laplace transform of Eq. (3): 1 

     0
ˆˆ s E sR s s  , this measurement process is expressed as: 2 

 0 0

0

lim lim
t t

d

dt E

 

 
     

   
0

0

1
=

ˆ ˆ 0sR s E R s

 
 
   

 (30) 3 

where     indicates the inverse Laplace transform. The proof of the final equality is based on the 4 

identity    
0 0

ˆlim =lim lim
t

t t s
F t dF dt dt sF s

  
 . The viscosity based on the CD expression Eq. (28)5 

can then be obtained as follows: 6 

   00
ˆ 0vis CDE R s E B   . (31) 7 

Obviously, when BCD = 1, the Maxwell expression 0E   is recovered.  8 

Eq. (31) represents the viscosity measured by a viscometer of a non-exponential relaxation 9 

glass. A comparison between the IET and viscometer measurement can finally be established based 10 

on Eqs. (28) and (31). We firstly substitute Eq. (28) into Eq. (16) in order to obtain the response 11 

function induced by the non-exponential relaxation. For any given BCD within the range of [0, 1], E0 12 

and  are adjusted to match the peak center and HWHM with the experimental results. After E0 and 13 

 are determined, vis is calculated using Eq. (31). If the calculated vis is the same as the value from 14 

the viscometer experiment, the corresponding BCD is selected. Then, using Eq. (27), BCD is 15 

converted into BKWW. 16 

Fig. 10(a) and (b) illustrate the calculated viscosity variation with varying BCD for IRG202 and 17 

IRG206, respectively. The calculated viscosity decreases monotonously with an increase in BCD. 18 

Therefore, the viscosity measured by the viscometer will only correspond to one BCD at a specific 19 

temperature. It is finally determined that the stretched exponent BKWW at Tg,v is ~0.42 for IRG202 20 

and ~0.43 for IRG206, both being markedly smaller than one. It is noted that the fragility m is 28 21 

for IRG202 and 41 for IRG206, based on the viscosity-temperature curves (measured by 22 

viscometer) shown in Fig. 9. With such a small magnitude of m, BKWW is markedly smaller than that 23 

expected from the correlation map between the fragility and stretched exponent proposed by 24 

Böhmer et al. [53], which is labeled as “BNAP region” in Fig. 10(c). This deviation may be 25 

attributed to the short-time (much less than one second) dynamics probed by IET, which may not be 26 

captured by a stress relaxation experiment based on tensile tests [54], or to the specific chemical 27 

structures of these two chalcogenide glasses. Furthermore, we note that other studies have reported 28 

similar small BKWW values for certain chalcogenide glasses, as plotted in Fig. 10(c). For example, 29 
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Gueguen et al. [45] conducted stress relaxation experiments on serval chalcogenide glasses 1 

GexSe1-x, and found that BKWW is within the range of [0.22, 0.26], while the fragilities range from 32 2 

to 37 [55]. Li et al. [56] found that Ge22Se78 has a fragility of 27 and also a very small BKWW = 0.43, 3 

which is identical to our result. They suggested that the cause of small BKWW could be the mixing 4 

effect of basic structural motifs. 5 

 6 

Fig. 10 The effect of stretching exponent on the calculated viscosity for (a) IRG202 and (b) IRG206 and (c) 7 

the correlation between the fragility versus stretching exponent. The data points of some chalcogenide glasses 8 

(including this work) are outside the BNAP region [53]. 9 

 10 

Fig. 11 Loss spectrum of L-BAL42 at the temperature of 490, 495, 500 and 510 C. DMA data are 11 

normalized using E0 = 82, 81, 80, 78 GPa and  =130, 60, 20 and 10.4 s, for the four temperatures respectively. 12 

 13 

For borosilicate glasses, it is expected that non-exponential relaxation is insignificant, which is 14 

the reason of the agreement of viscosities calculated from decay rate and measured by viscometer as 15 

shown in Fig. 8. To verify this point, DMA experiments are conducted (using Mettler Toledo 16 
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DMA1) to obtain the loss spectrum of the dynamic modulus which can be fitted with the expression 1 

of loss modulus E derived from the CD expression, as: 2 

    
CD /2

2

CD

0

1 sin arctan
BE

B
E

 


      
,  (32) 3 

where ω is the stimulated frequency. Fig.11 then shows DMA results of EE0 against , in which 4 

E0 and  are obtained based on the IET results (i.e., from Figs. 3(b) and 8(b) respectively). The data 5 

points collapse onto the narrow region bounded by the curves of Eq. (34) with BCD = 0.7 and 1. It is 6 

noted that the curve of Eq. (32) with BCD = 0.7 (i.e., BKWW=0.8) well fits the loss spectrum at the 7 

temperatures near Tg (490~500C) and that the loss spectrum at the higher temperature of 510C 8 

becomes almost unstretched (BCD = 1). These results corroborate the large (close to unity) stretching 9 

exponent of the examined borosilicate glass and also indicate the consistency of IET and DMA 10 

measurements. 11 

 12 

5. Concluding remarks 13 

This work examines the validity of applying the IET to studying structural relaxation in glass. 14 

It is demonstrated that the temperature dependence of Young’s modulus can be utilized to study the 15 

glass transition phenomenon for both borosilicate and chalcogenide glass. Furthermore, the flow 16 

viscosity of borosilicate glass can be determined from the decay rate data, based on the Burgers or 17 

Zener model; however, a more elaborate model is required for chalcogenide glass. Based on the 18 

theoretical and experimental investigations, the following remarks are made: 19 

(1) The glass transition point determined from the modulus variation with temperature is very close 20 

to Tg,v for the examined borosilicate glasses. However, this is not the case for the chalcogenide 21 

glasses.  22 

(2) The flow viscosity of borosilicate glass determined from the decay rate data agrees well with 23 

the measurements using a viscometer, indicating that the Burgers or Zener model can be used, and 24 

that our approach of linear extrapolation of the Kelvin damping contribution is sensible. However, 25 

the same approach does not work for the chalcogenide glasses. 26 

(3) A minimal model describing the transition from solid-like to liquid-like behavior is proposed, 27 

which can aid in choosing a viscoelastic model. For the borosilicate glasses, the low-temperature 28 

behavior may be purely elastic or Kelvin-Voigt, leading to a single structural relaxation time 29 

following glass transition. This is the fundamental reason that the viscosity determined from the 30 

decay rate data can match that measured by the viscometer.  31 

(4) For chalcogenide glass, the large discrepancy in viscosities, as estimated from the decay rate of 32 
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the IET tests and measured by the viscometer, is resulted from the Burgers model. This indicates a 1 

striking non-exponential relaxation, which cannot be described by the single Maxwell unit in the 2 

Burgers model. The CD expression is then used to evaluate the effect of non-exponentiality and to 3 

estimate the stretched exponent in a KWW expression. The stretching exponent at Tg,v is about 0.4 4 

for both chalcogenide glasses, which is consistent with some investigations.  5 

 6 

Acknowledgment 7 

This work was supported by the Early Career Scheme (ECS) of the Hong Kong Research 8 

Grants Council (Grant No. 25200515, Account Code: F-PP27) and the Internal Research Funds 9 

(G-YBDH) of Hong Kong Polytechnic University. We are grateful for the support. 10 

References  11 

[1] J. Forrest, K. Dalnoki-Veress, J. Stevens, J. Dutcher, Effect of free surfaces on the glass 12 

transition temperature of thin polymer films, Phys. Rev. Lett., 77 (1996) 2002-2005. 13 

[2] P.G. Debenedetti, F.H. Stillinger, Supercooled liquids and the glass transition, Nature, 410 (2001) 14 

259-267. 15 

[3] A. Cavagna, Supercooled liquids for pedestrians, Phys. Rep., 476 (2009) 51-124. 16 

[4] A.Q. Tool, Relation between inelastic deformability and thermal expansion of glass in its 17 

annealing range, J. Am. Ceram. Soc., 29 (1946) 240-253. 18 

[5] O. Narayanaswamy, A model of structural relaxation in glass, J. Am. Ceram. Soc., 54 (1971) 19 

491-498. 20 

[6] C.T. Moynihan, A.J. Easteal, J. Wilder, J. Tucker, Dependence of the glass transition 21 

temperature on heating and cooling rate, The journal of physical chemistry, 78 (1974) 2673-2677. 22 

[7] G.A. Medvedev, A.B. Starry, D. Ramkrishna, J.M. Caruthers, Stochastic model for volume 23 

relaxation in glass forming materials: Local specific volume model, Macromolecules, 45 (2012) 24 

7237-7259. 25 

[8] M. Yang, X. Liu, H. Ruan, Y. Wu, H. Wang, Z. Lu, High thermal stability and sluggish 26 

crystallization kinetics of high-entropy bulk metallic glasses, J. Appl. Phys., 119 (2016) 245112. 27 

[9] S. Wemple, Refractive-index behavior of amorphous semiconductors and glasses, Phys. Rev. B, 28 

7 (1973) 3767. 29 

[10] C.A. Angell, K.L. Ngai, G.B. McKenna, P.F. McMillan, S.W. Martin, Relaxation in 30 

glassforming liquids and amorphous solids, J. Appl. Phys., 88 (2000) 3113-3157. 31 

[11] C.A. Angell, Formation of glasses from liquids and biopolymers, Science, 267 (1995) 32 

1924-1935. 33 

[12] W. Liu, H. Ruan, L. Zhang, Revealing Structural Relaxation of Optical Glass Through the 34 

Temperature Dependence of Young's Modulus, J. Am. Ceram. Soc., 97 (2014) 3475-3482. 35 

[13] E. Le Bourhis, P. Gadaud, J.-P. Guin, N. Tournerie, X. Zhang, J. Lucas, T. Rouxel, Temperature 36 

dependence of the mechanical behaviour of a GeAsSe glass, Scripta Mater., 45 (2001) 317-323. 37 

[14] A.M. Glass, Investigation of the electrical properties of Sr1− x Ba x Nb2O6 with special 38 

reference to pyroelectric detection, J. Appl. Phys., 40 (1969) 4699-4713. 39 

[15] H. Kobayashi, Y. Hiki, H. Takahashi, An experimental study on the shear viscosity of solids, J. 40 

Appl. Phys., 80 (1996) 122-130. 41 

[16] A. Gent, Theory of the parallel plate viscometer, Br. J. Appl. Phys., 11 (1960) 85. 42 

[17] P. Koštál, J. Shánělová, J. Málek, Viscosity Measurements Applied to Chalcogenide 43 



24 
 

Glass-Forming Systems, in: J. Šesták, J.J. Mareš, P. Hubík (Eds.) Glassy, Amorphous and 1 

Nano-Crystalline Materials: Thermal Physics, Analysis, Structure and Properties, Springer 2 

Netherlands, Dordrecht, 2011, pp. 165-178. 3 

[18] J.C. Mauro, D.C. Allan, M. Potuzak, Nonequilibrium viscosity of glass, Phys. Rev. B, 80 (2009) 4 

094204. 5 

[19] M. Sellier, C.E. Hann, N. Siedow, Identification of relaxation functions in glass by mean of a 6 

simple experiment, J. Am. Ceram. Soc., 90 (2007) 2980-2983. 7 

[20] P. Mezeix, F. Célarié, P. Houizot, Y. Gueguen, F. Munoz, T. Rouxel, Elasticity and viscosity of 8 

BaOTiO2SiO2 glasses in the 0.9 to 1.2 Tg temperature interval, J. Non·Cryst. Solids, 445 (2016) 9 

45-52. 10 

[21] T. Hecksher, D.H. Torchinsky, C. Klieber, J.A. Johnson, J.C. Dyre, K.A. Nelson, Toward 11 

broadband mechanical spectroscopy, Proceedings of the National Academy of Sciences, (2017) 12 

201707251. 13 

[22] G. Roebben, B. Bollen, A. Brebels, J. Van Humbeeck, O. Van der Biest, Impulse excitation 14 

apparatus to measure resonant frequencies, elastic moduli, and internal friction at room and high 15 

temperature, Rev. Sci. Instrum., 68 (1997) 4511-4515. 16 

[23] J.D. Ferry, Viscoelastic properties of polymers, John Wiley & Sons, 1980. 17 

[24] I. Pereira, Overview on Determination of Elastic and Damping Properties of Different 18 

Materials using Impulse Excitation Technique, U. Porto Journal of Engineering, 3 (2017) 35-41. 19 

[25] E. Gregorová, W. Pabst, P. Diblíková, V. Nečina, Temperature dependence of damping in silica 20 

refractories measured via the impulse excitation technique, Ceram. Int., 44 (2018) 8363-8373. 21 

[26] G. Roebben, B. Basu, J. Vleugels, O. Van der Biest, Transformation-induced damping 22 

behaviour of Y-TZP zirconia ceramics, J. Eur. Ceram. Soc., 23 (2003) 481-489. 23 

[27] S. Adhikari, Structural dynamic analysis with generalized damping models: analysis, John 24 

Wiley & Sons, 2013. 25 

[28] E. ASTM, Standard test method for dynamic Young’s modulus, shear modulus, and Poisson’s 26 

ratio by sonic resonance, in:  Annual Book of ASTM Standards, 1875. 27 

[29] E. Goens, Über die bestimmung des elastizitätsmoduls von stäben mit hilfe von 28 

biegungsschwingungen, Annalen der Physik, 403 (1931) 649-678. 29 

[30] A. Tverjanovich, Temperature dependence of the viscosity of chalcogenide glass-forming melts, 30 

Glass Phys. Chem, 29 (2003) 532-536. 31 

[31] W. Liu, L. Zhang, K. Mylvaganam, Relaxation oscillation of borosilicate glasses in 32 

supercooled liquid region, Scientific reports, 7 (2017) 15872. 33 

[32] J. Yan, T. Zhou, J. Masuda, T. Kuriyagawa, Modeling high-temperature glass molding process 34 

by coupling heat transfer and viscous deformation analysis, Precision Engineering, 33 (2009) 35 

150-159. 36 

[33] M.D. Ediger, C. Angell, S.R. Nagel, Supercooled liquids and glasses, The journal of physical 37 

chemistry, 100 (1996) 13200-13212. 38 

[34] F.T. Trouton, On the coefficient of viscous traction and its relation to that of viscosity, 39 

Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and 40 

Physical Character, (1906) 426-440. 41 

[35] R.B. Bird, R.C. Armstrong, O. Hassager, Dynamics of polymeric liquids. Volume 1: fluid 42 

mechanics, A Wiley-Interscience Publication, John Wiley & Sons, (1987). 43 

[36] S. Różańska, J. Różański, M. Ochowiak, P. Mitkowski, Extensional viscosity measurements of 44 

concentrated emulsions with the use of the opposed nozzles device, Brazilian Journal of Chemical 45 

Engineering, 31 (2014) 47-55. 46 



25 
 

[37] F. Mainardi, G. Spada, Creep, relaxation and viscosity properties for basic fractional models in 1 

rheology, Eur. Phys. J. Spec. Top., 193 (2011) 133-160. 2 

[38] P. Oswald, Rheophysics: the deformation and flow of matter, Cambridge University Press, 3 

New York, 2009. 4 

[39] G.W. Scherer, Relaxation in glass and composites, (1986). 5 

[40] C. Bernard, G. Delaizir, J.-C. Sangleboeuf, V. Keryvin, P. Lucas, B. Bureau, X.-H. Zhang, T. 6 

Rouxel, Room temperature viscosity and delayed elasticity in infrared glass fiber, J. Eur. Ceram. 7 

Soc., 27 (2007) 3253-3259. 8 

[41] C. Perez, V. Alvarez, A. Vazquez, Creep behaviour of layered silicate/starch–polycaprolactone 9 

blends nanocomposites, Mater. Sci. Eng., A, 480 (2008) 259-265. 10 

[42] T. Zhou, J. Yan, J. Masuda, T. Kuriyagawa, Investigation on the viscoelasticity of optical glass 11 

in ultraprecision lens molding process, J. Mater. Process. Technol., 209 (2009) 4484-4489. 12 

[43] M.M. Smedskjaer, J.C. Mauro, R.E. Youngman, C.L. Hogue, M. Potuzak, Y. Yue, Topological 13 

principles of borosilicate glass chemistry, The Journal of Physical Chemistry B, 115 (2011) 14 

12930-12946. 15 

[44] T. Zhou, Zhou, Q., Xie, J., Liu, X., Wang, X.,, H. Ruan, Elastic‐viscoplasticity modeling of 16 

the thermo‐mechanical behavior of chalcogenide glass for aspheric lens molding, Int. J. Appl. 17 

Glass Sci., (2017). 18 

[45] Y. Gueguen, J.-C. Sangleboeuf, V. Keryvin, T. Rouxel, E.A. King, E. Robin, G. Delaizir, B. 19 

Bureau, X.-H. Zhang, P. Lucas, Sub-Tg viscoelastic behaviour of chalcogenide glasses, anomalous 20 

viscous flow and stress relaxation, J. Ceram. Soc. Jpn., 116 (2008) 890-895. 21 

[46] T. Kirkpatrick, D. Thirumalai, P.G. Wolynes, Scaling concepts for the dynamics of viscous 22 

liquids near an ideal glassy state, Phys. Rev. A, 40 (1989) 1045. 23 

[47] J.C. Dyre, N.B. Olsen, T. Christensen, Local elastic expansion model for viscous-flow 24 

activation energies of glass-forming molecular liquids, Phys. Rev. B, 53 (1996) 2171. 25 

[48] R. Kubo, Statistical-mechanical theory of irreversible processes. I. General theory and simple 26 

applications to magnetic and conduction problems, J. Phys. Soc. Jpn., 12 (1957) 570-586. 27 

[49] W. Gotze, L. Sjogren, Relaxation processes in supercooled liquids, Rep. Prog. Phys., 55 (1992) 28 

241. 29 

[50] G. Williams, D.C. Watts, Non-symmetrical dielectric relaxation behaviour arising from a 30 

simple empirical decay function, Trans. Faraday Society, 66 (1970) 80-85. 31 

[51] D.W. Davidson, R.H. Cole, Dielectric relaxation in glycerol, propylene glycol, and n‐32 

propanol, J. Chem. Phys., 19 (1951) 1484-1490. 33 

[52] C. Lindsey, G. Patterson, Detailed comparison of the Williams–Watts and Cole–Davidson 34 

functions, J. Chem. Phys., 73 (1980) 3348-3357. 35 

[53] R. Böhmer, K. Ngai, C.A. Angell, D. Plazek, Nonexponential relaxations in strong and fragile 36 

glass formers, J. Chem. Phys., 99 (1993) 4201-4209. 37 

[54] R. Böhmer, C.A. Angell, Correlations of the nonexponentiality and state dependence of 38 

mechanical relaxations with bond connectivity in Ge-As-Se supercooled liquids, Phys. Rev. B, 45 39 

(1992) 10091. 40 

[55] U. Senapati, A.K. Varshneya, Viscosity of chalcogenide glass-forming liquids: an anomaly in 41 

the ‘strong’and ‘fragile’classification, J. Non·Cryst. Solids, 197 (1996) 210-218. 42 

[56] P. Li, Y. Zhang, Z. Chen, P. Gao, T. Wu, L.-M. Wang, Relaxation dynamics in the strong 43 

chalcogenide glass-former of Ge 22 Se 78, Scientific reports, 7 (2017) 40547. 44 

 45 




