Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/95100
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Civil and Environmental Engineeringen_US
dc.creatorSun, Wen_US
dc.creatorShao, Hen_US
dc.creatorShen, Len_US
dc.creatorWu, Ten_US
dc.creatorLam, WHKen_US
dc.creatorYao, Ben_US
dc.creatorYu, Ben_US
dc.date.accessioned2022-09-14T08:20:03Z-
dc.date.available2022-09-14T08:20:03Z-
dc.identifier.issn0957-4174en_US
dc.identifier.urihttp://hdl.handle.net/10397/95100-
dc.language.isoenen_US
dc.publisherPergamon Pressen_US
dc.rights© 2021 Elsevier Ltd. All rights reserved.en_US
dc.rights© 2021. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.en_US
dc.rightsThe following publication Sun, W., et al. (2021). "Bi-objective traffic count location model for mean and covariance of origin–destination estimation." Expert Systems with Applications 170: 114554 is available at https://dx.doi.org/10.1016/j.eswa.2020.114554.en_US
dc.subjectBi-objective optimizationen_US
dc.subjectCovariance matrixen_US
dc.subjectOrigin–destination estimationen_US
dc.subjectSurrogate-assisted genetic algorithmen_US
dc.subjectTraffic count locationen_US
dc.titleBi-objective traffic count location model for mean and covariance of origin–destination estimationen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume170en_US
dc.identifier.doi10.1016/j.eswa.2020.114554en_US
dcterms.abstractThis paper describes a bi-objective optimization model for the traffic count location problem in stochastic origin–destination (OD) traffic demand estimation. Two measures are defined to capture the maximum possible absolute error of the mean and the covariance of the estimated OD demand. The bounds of these two measures are mathematically deduced, and then the bi-objective optimization model is formulated to minimize the two upper bounds simultaneously. A surrogate-assisted genetic algorithm is proposed to solve this model, and a series of numerical examples are presented to demonstrate the applicability of the proposed model and the efficiency of the proposed algorithm.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationExpert systems with applications, 15 May 2021, v. 170, 114554en_US
dcterms.isPartOfExpert systems with applicationsen_US
dcterms.issued2021-05-15-
dc.identifier.scopus2-s2.0-85099235745-
dc.identifier.eissn1873-6793en_US
dc.identifier.artn114554en_US
dc.description.validate202209 bcfcen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberCEE-0340-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNNSFC; the Key Project of Yong Talents in Fuyang Normal University; Fuyang Municipal Government-Fuyang Normal University Horizontal Cooperation Project; Research Initiation Foundation of Xuzhou Medical University; Top Six Talents’ Project of Jiangsu Provincen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS43052490-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Lam_Bi-Objective_Traffic_Count.pdfPre-Published version1.32 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

127
Last Week
3
Last month
Citations as of Nov 9, 2025

Downloads

137
Citations as of Nov 9, 2025

SCOPUSTM   
Citations

19
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

16
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.