Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/94106
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorWang, Cen_US
dc.creatorGao, Yen_US
dc.creatorXue, Xen_US
dc.date.accessioned2022-08-11T01:07:09Z-
dc.date.available2022-08-11T01:07:09Z-
dc.identifier.issn0022-247Xen_US
dc.identifier.urihttp://hdl.handle.net/10397/94106-
dc.language.isoenen_US
dc.publisherAcademic Pressen_US
dc.rights© 2022 Elsevier Inc. All rights reserved.en_US
dc.rights© 2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.en_US
dc.rightsThe following publication Wang, C., Gao, Y., & Xue, X. (2022). Joint space-time analyticity of mild solutions to the Navier-Stokes equations. Journal of Mathematical Analysis and Applications, 515(2), 126428 is available at https://dx.doi.org/10.1016/j.jmaa.2022.126428.en_US
dc.subjectBootstrapping argumenten_US
dc.subjectQuantitative estimateen_US
dc.subjectRadius of analyticityen_US
dc.titleJoint space-time analyticity of mild solutions to the Navier-Stokes equationsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume515en_US
dc.identifier.issue2en_US
dc.identifier.doi10.1016/j.jmaa.2022.126428en_US
dcterms.abstractIn this paper, we show the optimal decay rate estimates of the space-time derivatives and the joint space-time analyticity of solutions to the Navier-Stokes equations. As it is known from the Hartogs's theorem, for a complex function with two complex variables, the joint analyticity with respect to two variables can be derived from combining of analyticity with respect to each variable. However, as a function of two real variables for space and time, the joint space-time analyticity of solutions to the Navier-Stokes equations cannot be directly obtained from the combination of space analyticity and time analyticity. Our result seems to be the first quantitative result for the joint space-time analyticity of solutions to the Navier-Stokes equations, and the proof only involves real variable methods. Moreover, the decay rate estimates also yield the bounds on the growth (in time) of radius of space analyticity, time analyticity, and joint space-time analyticity of solutions.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationJournal of mathematical analysis and applications, 15 Nov. 2022, v. 515, no. 2, 126428en_US
dcterms.isPartOfJournal of mathematical analysis and applicationsen_US
dcterms.issued2022-11-15-
dc.identifier.scopus2-s2.0-85132742944-
dc.identifier.eissn1096-0813en_US
dc.identifier.artn126428en_US
dc.description.validate202208 bcchen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumbera1585-
dc.identifier.SubFormID45533-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Natural Science Foundation of China, 12101521en_US
dc.description.fundingTextStart-up fund of PolyU, P0036186en_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
NS_Space_Time_Analyticity.pdfPre-Published version1.17 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

92
Last Week
1
Last month
Citations as of Apr 14, 2025

Downloads

3
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

4
Citations as of Sep 12, 2025

WEB OF SCIENCETM
Citations

2
Citations as of Dec 5, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.