Please use this identifier to cite or link to this item:
http://hdl.handle.net/10397/93138
| Title: | Scenario forecasting for global tourism | Authors: | Wu, DC Cao, Z Wen, L Song, H |
Issue Date: | Jan-2021 | Source: | Journal of hospitality and tourism research, Jan. 2021, v. 45, no. 1, p. 28-51 | Abstract: | This study provides innovative forecasts of the probabilities of certain scenarios of tourism demand. The scenarios of interest are constructed in relation to tourism growth and economic growth. The probability forecasts based on these scenarios provide valuable information for destination policy makers. The time-varying parameter panel vector autoregressive (TVP-PVAR) model is adopted for scenario forecasting. Both the accuracy rate and the Brier score are used to evaluate the forecasting performance. A global set of 25 tourism destinations is empirically examined, and the results confirm that the TVP-PVAR model with a time-varying error covariance matrix is generally a promising tool for forecasting. Our study contributes to tourism forecasting literature in advocating the use of scenario forecasting to facilitate industry decision making in situations wherein forecasts are defined by two or more dimensions simultaneously. In addition, it is the first study to introduce the TVP-PVAR model to tourism demand forecasting. | Keywords: | Brier score Economic growth Scenario forecasting Time-varying parameter panel vector autoregressive Tourism growth |
Publisher: | SAGE Publications | Journal: | Journal of hospitality and tourism research | ISSN: | 1096-3480 | EISSN: | 1557-7554 | DOI: | 10.1177/1096348020919990 | Rights: | This is the accepted version of the publication Wu, D. C., Cao, Z., Wen, L., & Song, H., Scenario forecasting for global tourism, Journal of Hospitality & Tourism Research (Volume: 45 issue: 1) pp. 28-51. Copyright © 2020 (The Author(s)). DOI: 10.1177/1096348020919990 |
| Appears in Collections: | Journal/Magazine Article |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| Song_Scenario_Forecasting_Global.pdf | Pre-Published version | 1.72 MB | Adobe PDF | View/Open |
Page views
121
Last Week
5
5
Last month
Citations as of Nov 30, 2025
Downloads
172
Citations as of Nov 30, 2025
SCOPUSTM
Citations
30
Citations as of Dec 19, 2025
WEB OF SCIENCETM
Citations
25
Citations as of Dec 18, 2025
Google ScholarTM
Check
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.



