Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/93138
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorSchool of Hotel and Tourism Managementen_US
dc.creatorWu, DCen_US
dc.creatorCao, Zen_US
dc.creatorWen, Len_US
dc.creatorSong, Hen_US
dc.date.accessioned2022-06-09T06:14:01Z-
dc.date.available2022-06-09T06:14:01Z-
dc.identifier.issn1096-3480en_US
dc.identifier.urihttp://hdl.handle.net/10397/93138-
dc.language.isoenen_US
dc.publisherSAGE Publicationsen_US
dc.rightsThis is the accepted version of the publication Wu, D. C., Cao, Z., Wen, L., & Song, H., Scenario forecasting for global tourism, Journal of Hospitality & Tourism Research (Volume: 45 issue: 1) pp. 28-51. Copyright © 2020 (The Author(s)). DOI: 10.1177/1096348020919990en_US
dc.subjectBrier scoreen_US
dc.subjectEconomic growthen_US
dc.subjectScenario forecastingen_US
dc.subjectTime-varying parameter panel vector autoregressiveen_US
dc.subjectTourism growthen_US
dc.titleScenario forecasting for global tourismen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage28en_US
dc.identifier.epage51en_US
dc.identifier.volume45en_US
dc.identifier.issue1en_US
dc.identifier.doi10.1177/1096348020919990en_US
dcterms.abstractThis study provides innovative forecasts of the probabilities of certain scenarios of tourism demand. The scenarios of interest are constructed in relation to tourism growth and economic growth. The probability forecasts based on these scenarios provide valuable information for destination policy makers. The time-varying parameter panel vector autoregressive (TVP-PVAR) model is adopted for scenario forecasting. Both the accuracy rate and the Brier score are used to evaluate the forecasting performance. A global set of 25 tourism destinations is empirically examined, and the results confirm that the TVP-PVAR model with a time-varying error covariance matrix is generally a promising tool for forecasting. Our study contributes to tourism forecasting literature in advocating the use of scenario forecasting to facilitate industry decision making in situations wherein forecasts are defined by two or more dimensions simultaneously. In addition, it is the first study to introduce the TVP-PVAR model to tourism demand forecasting.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationJournal of hospitality and tourism research, Jan. 2021, v. 45, no. 1, p. 28-51en_US
dcterms.isPartOfJournal of hospitality and tourism researchen_US
dcterms.issued2021-01-
dc.identifier.scopus2-s2.0-85085922208-
dc.identifier.eissn1557-7554en_US
dc.description.validate202206 bckwen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberSHTM-0104-
dc.description.fundingSourceSelf-fundeden_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS23855077-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Song_Scenario_Forecasting_Global.pdfPre-Published version1.72 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

121
Last Week
5
Last month
Citations as of Nov 30, 2025

Downloads

172
Citations as of Nov 30, 2025

SCOPUSTM   
Citations

30
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

25
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.