Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/91509
PIRA download icon_1.1View/Download Full Text
Title: Groundwater level prediction in arid areas using wavelet analysis and gaussian process regression
Authors: Band, SS
Heggy, E
Bateni, SM
Karami, H
Rabiee, M
Samadianfard, S
Chau, KW 
Mosavi, A
Issue Date: 2021
Source: Engineering applications of computational fluid mechanics, 2021, v. 15, no. 1, p. 1147-1158
Abstract: Utilizing new approaches to accurately predict groundwater level (GWL) in arid regions is of vital importance. In this study, support vector regression (SVR), Gaussian process regression (GPR), and their combination with wavelet transformation (named wavelet-support vector regression (W-SVR) and wavelet-Gaussian process regression (W-GPR)) are used to forecast groundwater level in Semnan plain (arid area) for the next month. Three different wavelet transformations, namely Haar, db4, and Symlet, are tested. Four statistical metrics, namely root mean square error (RMSE), mean absolute percentage error (MAPE), coefficient of determination (R 2), and Nah-Sutcliffe efficiency (NS), are used to evaluate performance of different methods. The results reveal that SVR with RMSE of 0.04790 (m), MAPE of 0.00199%, R 2 of 0.99995, and NS of 0.99988 significantly outperforms GPR with RMSE of 0.55439 (m), MAPE of 0.04363%, R2 of 0.99264, and NS of 0.98413. Besides, the hybrid W-GPR-1 model (i.e. GPR with Harr wavelet) remarkably improves the accuracy of GWL prediction compared to GPR. Finally, the hybrid W-SVR-3 model (i.e. SVR with Symlet) provides the best GWL prediction with RMSE, MAPE, R2, and NS of 0.01290 (m), 0.00079%, 0.99999, and 0.99999, respectively. Overall, the findings indicate that hybrid models can accurately predict GWL in arid regions.
Keywords: Artificial intelligence
Gaussian process regression
Groundwater level prediction
Hydrological model
Machine learning
Support vector
Publisher: Hong Kong Polytechnic University, Department of Civil and Structural Engineering
Journal: Engineering applications of computational fluid mechanics 
ISSN: 1994-2060
EISSN: 1997-003X
DOI: 10.1080/19942060.2021.1944913
Rights: © 2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
The following publication Band, S. S., Heggy, E., Bateni, S. M., Karami, H., Rabiee, M., Samadianfard, S., ... & Mosavi, A. (2021). Groundwater level prediction in arid areas using wavelet analysis and Gaussian process regression. Engineering Applications of Computational Fluid Mechanics, 15(1), 1147-1158 is available at https://doi.org/10.1080/19942060.2021.1944913
Appears in Collections:Journal/Magazine Article

Files in This Item:
File Description SizeFormat 
19942060.2021 (1).pdf3.5 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show full item record

Page views

32
Citations as of Aug 14, 2022

Downloads

1
Citations as of Aug 14, 2022

SCOPUSTM   
Citations

11
Citations as of Aug 18, 2022

WEB OF SCIENCETM
Citations

10
Citations as of Aug 18, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.