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ABSTRACT
Utilizing new approaches to accurately predict groundwater level (GWL) in arid regions is of vital
importance. In this study, support vector regression (SVR), Gaussian process regression (GPR), and
their combination with wavelet transformation (named wavelet-support vector regression (W-SVR)
andwavelet-Gaussianprocess regression (W-GPR)) are used to forecast groundwater level in Semnan
plain (arid area) for the next month. Three different wavelet transformations, namely Haar, db4, and
Symlet, are tested. Four statistical metrics, namely root mean square error (RMSE), mean absolute
percentage error (MAPE), coefficient of determination (R2), andNah-Sutcliffe efficiency (NS), are used
to evaluate performance of different methods. The results reveal that SVR with RMSE of 0.04790 (m),
MAPE of 0.00199%, R2 of 0.99995, and NS of 0.99988 significantly outperforms GPR with RMSE of
0.55439 (m),MAPEof 0.04363%, R2of 0.99264, andNSof 0.98413. Besides, thehybridW-GPR-1model
(i.e. GPR with Harr wavelet) remarkably improves the accuracy of GWL prediction compared to GPR.
Finally, the hybridW-SVR-3model (i.e. SVRwith Symlet) provides the best GWLpredictionwith RMSE,
MAPE, R2, and NS of 0.01290 (m), 0.00079%, 0.99999, and 0.99999, respectively. Overall, the findings
indicate that hybrid models can accurately predict GWL in arid regions.
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Introduction

The sharp decline of groundwater level (GWL) in arid
areas has attracted the attention of water resources engi-
neers. By increasing the demand for water resources
in industrial, residential, and agricultural sectors, fore-
casting the groundwater level has gained its particu-
lar importance in groundwater resources management
(Nayak et al., 2006; Suryanarayana et al., 2014).Moreover,
GWL predictions have been used to avoid the side effects
of groundwater level decline including the loss of water
pumping capacity from wells and ground subsidence
(Moosavi et al., 2013; Shirmohammadi et al., 2013a).

Numerical methods are often computationally expen-
sive and need many input variables in predicting GWL
(Anderson & Woessner, 1992). Hence, in recent years, a
number of studies used machine learning algorithms to
predict GWL (Taormina et al., 2012; Porte et al., 2018;
Lal & Datta, 2018; Su et al., 2020; Niu & Feng, 2021;
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Alcalá García et al., 2021). By using air temperature,
precipitation and GWL in preceding months, Chang
et al. (2015) employed the feedforward neural network
model to predict monthly GWL. Gholami et al. (2015)
applied a multilayer perceptron (MLP) model to fore-
cast GWL. Their results indicated that MLP model had
a high capability for GWL forecasting. Rezaie-balf et al.
(2017) utilized Multivariate Adaptive Regression Splines
(MARS) and M5 Model Trees (MT) to simulate GWL
fluctuation. Ghose et al. (2018) used radial basis neural
network (RNN) to predict GWL. Rainfall, air tempera-
ture and humidity, runoff, and evapotranspiration were
used as inputs in their model. Banadkooki, Ehteram,
Ahmed, Teo, Fai, Afan, and El-Shafie (2020) attempted
to predict GWL by hybrid radial basis neural net-
work–whale algorithm (RNN-WA), hybrid MLP–WA,
and genetic programming (GP) approaches. The results
indicated that MLP–WA was more accurate than the
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other two approaches for 3, 6, and 9 months ahead fore-
cast scenarios.

Recently, Support Vector Regression (SVR) and Gaus-
sian Process Regression (GPR) were utilized to pre-
dict different hydrologic variables such as water level
in lakes and dams (Hipni et al., 2013; Lan, 2014), river
flow forecasting (Esmaeilzadeh et al., 2017; Samadian-
fard et al., 2019a), global solar radiation (Samadian-
fard et al., 2019b), daily dew point temperature (Qasem
et al., 2019), longitudinal dispersion coefficient in natu-
ral streams (Kargar et al., 2020), pan evaporation (Sha-
bani et al., 2020) and standardized streamflow index
(Shamshirband et al., 2020). SVR is a type of support vec-
tor machine (SVM) algorithm, which was introduced by
Vapnik (1995). It belongs to supervised learning algo-
rithms and can be used to solve regression problems
(Cortes & Vapnik, 1995; Vapnik, 1999). SVR is able to
achieve good prediction of variables of interest based
on a small number of statistical samples. Compared to
fuzzy logic and neural network approaches, SVR has a
shorter training time, lower data dependence, and eas-
ier implementation. Gaussian Process Regression (GPR)
is a Bayesian learning approach, which assumes the out-
put probability distribution be Gaussian since it does not
change the probability of inputs (O’Hagan, 2013; Sun
et al., 2013). GPR is able to model complex relationships
between inputs and outputs and cope with a broad range
of simulation behaviors of alternative models (Karami
et al., 2018; Liu &West, 2009; O’Hagan, 2013; Rasmussen
& Nickisch, 2010). It deals with certain aspects of regres-
sion and prediction problems (Reis et al., 2005; Stedinger
& Tasker, 1985; Vogel et al., 1999).

Using single techniques may be risky for water
resources management. Hence, hydrologists usually take
advantage of hybrid approaches to make better deci-
sions for managing water resources. Various studies indi-
cated that combining different techniques anddeveloping
hybrid methods could improve the prediction. Graf et al.
(2019) applied 4 mother wavelets, namely Daubechies,
Symlet, discrete Meyer and Haar, coupled with ANN to
predict daily water temperature at a river in Poland. Zhu
et al. (2020) applied a hybrid wavelet-multi layer percep-
tron approach to forecast daily surface water temperature
at eight lakes in Polish. Campozano et al. (2020) investi-
gated the capabilities of ANN to predict river discharge
using wavelet analysis.

Wavelet transfer (WT) can analyze changes in
time-series to provide the time scale of non-stationary
signals (Adamowski, 2008; Adamowski & Chan, 2011;
Karami et al., 2018; Kisi & Cimen, 2011; Samadianfard
et al., 2018; Zhang & Dong, 2001; Zheng et al., 2000).
In contrast to classical Fourier analysis (FA), which is
a trigonometric polynomial, WT propagates functions

in waves. This form of translations and dilations is
generated using a fixed function called mother wavelet
(Zhu et al., 2020). It decomposes time series into sub-
components and supplies more data at different reso-
lutions, ultimately increasing the veracity of prediction
models (Tikhamarine et al., 2019). WT has been widely
used in water resources management studies (Karthika
& Deka, 2015; Shafaei & Kisi, 2015; Shirmohammadi
et al., 2013b). Also recently Rezaie-balf et al. (2017)
coupled WT with MARS and MT to increase the accu-
racy of GWL forecast. Consequently, the goal of this
study is to predict one-month ahead groundwater level
in Semnan plain (Iran) by SVR, GPR, wavelet-support
vector regression (W-SVR) and wavelet-Gaussian pro-
cesses regression (W-GPR) approaches. Semnan plain
has an arid climate with a mean annual rainfall of
140 (mm). Groundwater is the main source of water
supply for residential and agricultural sectors in Sem-
nan plain. However, its improper use has caused severe
problems (e.g. sharp decline in groundwater level, land
subsidence, and shortage of irrigation water) in Sem-
nan province. Hence, the results of this study can help
decision makers and stakeholders to manage ground-
water resources more efficiently. Three different mother
wavelets, namely Haar, db4, and Symlet, are tested in
W-SVR and W-GPR approaches. Monthly air temper-
ature, precipitation, relative humidity, and groundwater
level for a period of 20 years (1996–2017) are used as
inputs.

Materials andmethods

Study area

Semnan plain is located in the east of Tehran and has an
area of about 1207 km2. The study area spans over the
longitude of 53°3′ E – 53°40′ E, and latitude of 35°18′ N –
35°43′ N. The plain has an altitude of 874–1857m above
the sea level. It has an arid climate with an average annual
precipitation of about 140mm.More than 80% of precip-
itation in the Semnan plain evaporates. The remaining
20% is converted into the runoff and groundwater. The
location of Semnan plain in Iran and its observationwells
are shown in Figure 1.

Data

Various factors such as air temperature, humidity, pre-
cipitation, evapotranspiration, aquifer storage capac-
ity, harvesting rate from wells, and recharging aquifers
affect GWL (Adeleke et al., 2015). However, only a
subset of these variables is available in Semnan plain.
Based on literature (Banadkooki, Ehteram, Ahmed,
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Figure 1. Location of Semnan plain (note: The red dots and black circle show the location of observation wells in Semnan plain and
Merhamat Abad well, respectively.)

Figure 2. Time series of mean monthly minimum relative humidity (%) (1996–2017).

Teo, Fai, Afan, Sapitang, et al., 2020; Emamgholizadeh
et al., 2014; Khoshand, 2021) and correlation analyses
between GWL and available micrometeorological vari-
ables in Semnan plain, mean minimum air temperature
(T̄min), minimum relative humidity (RHmin), precipita-
tion (P) and GWL in the current and previous three
months are used as inputs. The micrometeorological
data are provided by Semnan Meteorological Organiza-
tion (http://www.semnanweather.ir/). Groundwater level
data from the observation wells are provided by Semnan
Provincial District Water Authority from March 1996
to February 2017 (http://www.semnanweather.ir/). The
entire dataset is divided into training (March 1996–Octo-
ber 2012) and testing (November 2012–February 2017)
datasets. Time series of RHmin, P, T̄min and GWL in
Semnan plain during 1996–2017 (20 years) are shown in
Figures 2–5, respectively. Statisticalmetrics of the utilized
variables are shown in Table 1.

Support vector regression (SVR)

Support vector regression (SVR) is a nonparametric
method, which was developed by Vapnik (1995). It has

beenused as amachine learning tool for classification and
regression (Mirarabi et al., 2019). The performance of
SVR is highly dependent on its kernel. Consider a dataset

{(xi, di)} N
i where xi is the input vector, di is the tar-

get value, and N is the number of data samples. The SVR
function, f (x), is given by,

f (x) = ω.φ(x)+ b (1)

where ω is the weight vector, φ is the non-linear transfer
function and b is the bias. To achieve a proper perfor-
mance of f (x), the regression problem is estimated by
minimizing the structural risk function:

minimize :
1
2
ω2 + c

( N∑
i=1
(ξi + ξi

∗)

)
(2)

Subject to

⎧⎨
⎩
ω.φ(xi)+ bi − di ≤ ε + ξi

∗
di − ω.φ(xi)+ bi ≤ ε + ξi
ξi, ξi∗ ≥ 0, i = 1, 2, . . . .,N

(3)

where ξi and ξi∗ are the slack variables, c is the error
penalty term, which denotes the trade-off of the risk term

http://www.semnanweather.ir/
http://www.semnanweather.ir/
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Figure 3. Time series of mean monthly precipitation (mm) (1996–2017).

Figure 4. Time series of mean monthly minimum air temperature (°C) (1996–2017).

Figure 5. Time series of mean monthly groundwater level in Semnan plain (1996–2017).

Table 1. Statistical metrics of the utilized variables.

Variable Mean Minimum Maximum
Standard
deviation

P (mm) 11.19 0.00 87.50 14.31
RHmin (%) 25.90 8.00 62.00 12.49
T̄min (˚C) 13.23 −6.30 28.40 9.37
GWL (m) 1038.31 1032.08 1046.51 4.19

and regularization observed so that the deviation ε can
be tolerated, and ε is the error tolerance (Suryanarayana
et al., 2014). By making an appropriate change to the ini-
tial formula of the target function, we can turn it into
a dual problem for quadratic programming. Quadratic
programming is then used to solve the SVR problem:

f (x) =
n∑
i=1
(αi − αi

∗).k(xi, x)+ b (4)

where αi and αi∗ are dual Lagrange multipliers, k (xi, x)
is the kernel function, which is equal to φ(xi)φ(x). The
above equation is used for both linear and non-linear
regression analyses (Isazadeh et al., 2017). It is important
to choose the right parameters to achieve a reliable pre-
dictive accuracy (Zounemat-Kermani et al., 2016). One
of the widely used kernel function is the radial basic
function, which is given below:

k(xi, x) = exp(γ x − xi)2 (5)

where γ is the kernel width (Yu et al., 2018).
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Gaussian process regression (GPR)

GPR is a non-parametric and stochastic approach
that can solve nonlinear regression problems (Grbic
et al., 2013). GPR learns the relationship between the
predictor and target. According to linear regression, the
response variable y can be defined as a function of
p-dimensional variables x = [x1, . . . , xp]T parameterized
by w = [w1, . . . , wp]T as shown in Equation (6) (Wang &
Chen, 2015):

yi =
p∑

d=1

wdxid + εi(i = 1, . . . , n) (6)

where n is the number of data points, xid is the dth covari-
ate of xi, and εi is the Gaussian noise with zero mean and
variance σ 2

ε (Wang & Chen, 2015).
The output value y = [y1, . . . , yn]T, as a linear func-

tion of w and εi, is also Gaussian with zero mean
and covariance matrix C. The Gaussian process can be
defined as p(y) = G (0, C), where G denotes the Gaus-
sian distribution. The equation for C is given by Wang
and Chen (2015):

Cij = C(xi, xj) = σ 2
wx

T
i xj + δijσ

2
ε (7)

where δij is equal to 1 for i = j, and 0 for i �= j. Equation
(8) presents the Gaussian variance (Wang &Chen, 2015):

σ 2
∗ = C(x∗, x∗)− kT∗C

−1k∗ (8)

where x refers to the input values and k∗ = [C(x∗,
x1), . . . , C(x∗, xn)]T. Accordingly, the log-likelihood of
the training data can be defined by Equation (9) to take
hyper-parameters in the presence of maximum likeli-
hood computation (Wang & Chen, 2015):

L =
(

−1
2

)
log(detC)− 1

2
yTC−1y − n

2
log(2π) (9)

Equation (10) presents the derivative of the log-
likelihood with respect to each hyper parameter (Wang
& Chen, 2015):

∂L
∂θ

=
(

−1
2

)
tr
(
C−1 ∂C

∂θ

)
+
(
1
2

)
yTC−1

(
∂C
∂θ

)
C−1y

(10)

Wavelet transform (WT)

The wavelet transform (WT) has been successful in the
field of signal processing (Starck & Murtagh, 2001). In
general, WT replaces local oscillating base functions
(called wavelets) with infinitely oscillating base functions
of Fourier transform. In fact, wavelets are displaced ver-
sions of a stem wavelet with a value of ψ(t) (Selesnick

et al., 2005). These wavelets, by selecting and combin-
ing with a low-pass scale function with a value of ϕ(t),
can form a balanced base shape for signals of a one-
dimensional time series (1-D). Accordingly, any finite
energy analog signal x(t) can be separated in terms of
wavelets and scale functions by Equation (11) (Selesnick
et al., 2005):

x(t) =
∞∑

n=−∞
c(n)∅(t − n)

+
∞∑
j=0

∞∑
n=−∞

d(j, n)2
(
j
2

)
ψ(2jt − n) (11)

where ψ(t) is the mother wavelet function, j is the scale
factor, and n is the time shift. It should be noted that
in WT, the basic functions are translations of a function
named the mother wavelet. Besides, the scaling coeffi-
cients c(n) and wavelet coefficients d(j, n) are computed
via the inner products as shown in Equations (12) and
(13) (Selesnick et al., 2005):

c(n) =
∫ −∞

+∞
x(t)∅(t − n)dt (12)

d(j, n) = 2
(
j
2

) ∫ −∞

+∞
x(t)ψ(2jt − n)dt (13)

c(n) and d(j, n) provide a time–frequency analysis of the
signal by measuring its frequency content (controlled by
the scale factor j) at different times (controlled by the time
shift n).

This study uses three different mother wavelets,
namely Haar, db4, and Symlet, to compare their per-
formance to improve groundwater level modeling when
applying hybrid W-SVR and W-GPR models.

Performance indicators

Root mean square error (RMSE), mean absolute per-
centage error (MAPE), coefficient of determination (R2),
and Nah-Sutcliffe efficiency (NS) are used to measure the
accuracy of predictions. The expression for each of these
metrics is shown below (Faizollahzadeh Ardabili et al.,
2018):

RMSE =
√√√√1

n

n∑
i=1

(xi − yi)2 (14)

MAPE = 1
n

n∑
i=1

|(xi − yi)|
yi

× 100 (15)
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Figure 6. Time series of monthly GWL observations and predictions from (a) GPR and SVR, (b) W-GPR-1 and W-SVR-1, (c) W-GPR-2 and
W-SVR-2, and (d) W-GPR-3 and W-SVR-3 during 2012–2017.

NS = 1 −
∑n

i=1 (xi − yi)2∑n
i=1 (xi − ȳ)2

− ∞ 	 NS 	 1

(16)

R2 =
∑n

i=1(xi − x̄)(yi − ȳ)√∑n
i=1 (xi − x̄)2

∑n
i=1 (yi − ȳ)2

0

	 R2 	 1 (17)

where xi and yi are the ith observed and predicted
groundwater levels, respectively. x̄, ȳ are the average of
observed and predicted groundwater level data, respec-
tively, and n is the number of total data.
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The correlation coefficient (R2) indicates the degree of
correlation between the observed and predicted values.
The closer it is to 1, the more the observed and predicted
data are correlated. RMSE andMAPE denote the error of
predictions. The closer they are to 0, the more accurate
the prediction is. The closer NS is to 1, the more accurate
the prediction is.

Results and discussion

In this study, the hybrid Haar-, db4-, and Symlet-SVR
models are named W-SVR-1, W-SVR-2, and W-SVR-3,
respectively. Similarly, the Haar, db4, and Symlet mother
wavelets combined with GPR are called W-GPR-1,
W-GPR-2, and W-GPR-3, respectively. The results of
SVR, GPR, W-SVR, and W-GPR models are compared
in Figure 6 and Table 2. As can be seen, SVR significantly
outperforms GPR. RMSE and MAPE of GWL predic-
tions from SVR are 91.3% and 95.4% less than those of
GPR (Figure 6(a)). Besides, all three hybridW-SVRmod-
els perform better than their corresponding hybrid W-
GPR approaches (Figure 6(b–d)). GWL predictions from
all models can capture the continuous decline in GWL
observations. W-GPR-1, as the most accurate W-GPR
model, provides GWL predictions with lower RMSE and
MAPE values (0.29406 (m) and 0.02274%) and higher
R2 and NS values (0.99866 and 0.99554) in comparison
with standalone GPR with RMSE, MAPE, R2 and NS
values of 0.55439, 0.04363, 0.99264 and 0.98413, respec-
tively. Besides, W-GPR-1 reduces RMSE and MAPE of
standalone GPR by 47.0% and 47.9%, respectively. The
statistical metrics indicate that W-SVR-3 yield the most
precise GWL predictions with RMSE, MAPE, R2 and NS
values of 0.01290 (m), 0.00079%, 0.99999 and 0.99999,
respectively. W-SVR-3 reduces RMSE andMAPE of SVR
by 73.1% and 60.3%, respectively. The overall compari-
son of GPR, SVR,W-GPR, andW-SVRmodels illustrates
that hybrid models have higher capabilities in predicting
GWLcompared to standaloneGPRand SVRmodels. The
findings indicates that Haar and Symlet mother wavelets
have higher positive effects on improving errormetrics of
standalone GPR and SVRmodels, respectively. Thus, W-
GPR-1 and W-SVR-3 may be recommended as the most
accurate models for GWL prediction.

Scatterplots of observed and predicted GWL values
from different models are shown in Figure 7. As can be
seen, the predictions from GPR and W-GPR fall around
the 45-degree line (left column in Figure 7), implying
that these models can reliably predict GWL. GWL pre-
dictions from SVR and W-SVR mostly fall on the 1:1
line, denoting these models can forecast GWL very pre-
cisely. Overall, a comparison of scatterplots in the left and

Table 2. Statistical metrics of different approaches.

Statistical metrics

Approach
Mother
wavelet R2 RMSE (m) NS MAPE (%)

GPR – 0.99264 0.55439 0.98413 0.04363
SVR – 0.99995 0.04790 0.99988 0.00199
W-GPR-1 Haar 0.99866 0.29406 0.99554 0.02274
W-GPR-2 db4 0.98621 0.51029 0.98619 0.03969
W-GPR-3 Symlet 0.99051 0.47297 0.98814 0.02738
W-SVR-1 Haar 0.99996 0.04759 0.99988 0.00244
W-SVR-2 db4 0.99996 0.02861 0.99996 0.00133
W-SVR-3 Symlet 0.99999 0.01290 0.99999 0.00079

right columns shows that SVR-based models are supe-
rior to GPR-based ones. Besides, among the three tested
mother wavelets, Haar and Symlet have the best effi-
cacy when combined with GPR and SVR, respectively.
Comparing the results of GPR and SVR (first row) with
those of W-GPR andW-SVR (second-fourth rows) illus-
trates that WT, as a data preprocessing technique, is able
to map the relationship between GWL and its influen-
tial variables more robustly. This happens because WT
decomposes complex time series by catching informa-
tion on different levels, which results in a more effective
structure for machine learning methods (Adamowski &
Sun, 2010; Nourani et al., 2009; Zhou et al., 2020). In fact,
the decomposed input variables give GPR and SVRmod-
elsmore flexibility in simulating the relationship between
input and output variables. As a result, WT shows a
significant contribution in explaining the hidden rela-
tionship between meteorological variables and GWL in
Semnan plain.

Taylor diagram is designed to graphically indicate
which of several prediction models are more realistic.
This diagram is based on the geometric linkage between
the correlation coefficient and standard deviation. It can
be presented in two forms: semicircle (showing nega-
tive and positive correlation) and quadrant (indicating
positive correlation only). In both forms, the values of
the correlation coefficients are expressed on the arc of
the circle. The graph evaluation method is tailored such
that any model whose location is in the graph closer to
the reference point is more accurate and therefore more
appropriate (Taylor, 2001).

The impact of different mother wavelets on the accu-
racy of groundwater level predictions has not been fully
investigated in the literature. The Taylor diagram in
Figure 8 shows a comparison of all models used in
this research. The results indicate that applying different
mother wavelets, namely Haar, db4, Symlet, for devel-
oping hybrid W-SVR and W-GPR models can provide
different performances. The green point (observed on
the horizontal axis) indicates the position of the refer-
ence point according to standard deviation. The pink and
orange points (W-SVR-3 andW-SVR-2) are closer to the
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Figure 7. Scatterplots of monthly observed and predicted values from GPR and SVR (1st row), (b) W-GPR-1 and W-SVR-1 (2nd row),
W-GPR-2 and W-SVR-2 (3rd row), and W-GPR-3 and W-SVR-3 (4th row) during 2012–2017.
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Figure 8. Taylor diagram for the utilized models.

reference point and provide better results. The blue point
(GPR) falls outside the semicircle and is far from the
reference point. However, by adding wavelet analysis to
this model, the results are improved and the yellow point
(W-GPR-1) is closer to the observed point. Yet, at the
end, the best model is W-SVR-3 with the Symlet mother
wavelet. These results show that the effectiveness of dif-
ferent mother wavelets should be explored for predicting
GWL. These findingsmay be used by local authorities for
monitoring and managing groundwater level decline of
Semnan plain.

Conclusion

Groundwater level (GWL) prediction is of vital impor-
tance for residential, agricultural and industrial sectors,
especially in arid regions. In this study, support vector
regression (SVR), Gaussian process regression (GPR),
hybrid wavelet-SVR (W-SVR), and hybrid wavelet-GPR
(W-GPR) methods with three different mother wavelets
(i.e. Haar, db4, Symlet) are used to predict GWL in Sem-
nan plain, which is an arid region. Performance of these
approaches is compared based on the root mean square
error (RMSE), mean absolute percentage error (MAPE),
coefficient of determination (R2), and Nah-Sutcliffe effi-
ciency (NS) metrics. Minimum air temperature, mini-
mum relative humidity, precipitation and groundwater
level of three preceding and currentmonths are employed
as inputs to predict the one-month ahead GWL. All
approaches can reliably capture the continuous decline
in GWL during the testing period (2012–2017). How-
ever, SVR can predict GWL more accurately than GPR.
RMSE and MAPE of GWL predictions from SVR are
respectively 0.04790 (m) and 0.00199%, which are 91.3%
and 95.4% less than those of GPR. Besides, adding any
of the three mother wavelets to GPR and SVR improves

their performance. It is found that Harr and Symlet
mother wavelets are the most effective ones when com-
bined with GRP and SVR, respectively. The hybrid W-
SVR-3 model (that uses Symlet mother wavelet) reduces
RMSE and MAPE of GWL predictions by 73.1% and
60.3% compared to SVR. Similarly, the hybrid W-GPR-
1 model (that used Harr wavelet) decreases RMSE and
MAPE of predicted GWL values by 46.9% and 47.9% rel-
ative toGPR.Overall, the results show that bothGPR and
SVR and specifically their combination with the wavelet
analysis can accurately predict GWL, ultimately allowing
water resources planners to create effective measures for
conserving groundwater resources in Semnan plain.
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