Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/90384
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Chinese and Bilingual Studiesen_US
dc.creatorChersoni, Een_US
dc.creatorHuang, CRen_US
dc.date.accessioned2021-06-28T07:25:43Z-
dc.date.available2021-06-28T07:25:43Z-
dc.identifier.urihttp://hdl.handle.net/10397/90384-
dc.language.isoenen_US
dc.rights© 2021 IW3C2 (International World Wide Web Conference Committee), published under Creative Commons CC-BY 4.0 License.en_US
dc.rightsThis paper is published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license (https://creativecommons.org/licenses/by/4.0/). Authors reserve their rights to disseminate the work on their personal and corporate Web sites with the appropriate attribution.en_US
dc.rightsThe following publication Chersoni, E., & Huang, C. R. (2021, April). PolyU-CBS at the FinSim-2 Task: Combining Distributional, String-Based and Transformers-Based Features for Hypernymy Detection in the Financial Domain. In Companion Proceedings of the Web Conference 2021, p. 316-319 is available at https://doi.org/10.1145/3442442.3451387en_US
dc.subjectDistributional modelsen_US
dc.subjectFinancial NLPen_US
dc.subjectHypernymy detectionen_US
dc.titlePolyU-CBS at the FinSim-2 task : combining distributional, string-based and transformers-based features for hypernymy detection in the financial domainen_US
dc.typeConference Paperen_US
dc.identifier.spage316en_US
dc.identifier.epage319en_US
dc.identifier.doi10.1145/3442442.3451387en_US
dcterms.abstractIn this contribution, we describe the systems presented by the PolyU CBS Team at the second Shared Task on Learning Semantic Similarities for the Financial Domain (FinSim-2), where participating teams had to identify the right hypernyms for a list of target terms from the financial domain. For this task, we ran our classification experiments with several distributional, string-based, and Transformer features. Our results show that a simple logistic regression classifier, when trained on a combination of word embeddings, semantic and string similarity metrics and BERT-derived probabilities, achieves a strong performance (above 90%) in financial hypernymy detection.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationWWW '21: Companion Proceedings of the Web Conference 2021, Ljubljana Slovenia, April 2021, p. 316-319en_US
dcterms.issued2021-04-
dc.relation.ispartofbookWWW '21: Companion Proceedings of the Web Conference 2021en_US
dc.relation.conferenceWeb Conferenceen_US
dc.description.validate202106 bcvcen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumbera0863-n01-
dc.description.fundingSourceSelf-fundeden_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Conference Paper
Files in This Item:
File Description SizeFormat 
a0863_n01_FINSIM_Shared_Task.pdf439.82 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

244
Last Week
11
Last month
Citations as of Nov 9, 2025

Downloads

103
Citations as of Nov 9, 2025

SCOPUSTM   
Citations

4
Citations as of Jun 21, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.