Please use this identifier to cite or link to this item:
http://hdl.handle.net/10397/90028
DC Field | Value | Language |
---|---|---|
dc.contributor | Institute of Textiles and Clothing | en_US |
dc.creator | Wang, X | en_US |
dc.creator | Yang, B | en_US |
dc.creator | Li, Q | en_US |
dc.creator | Wang, F | en_US |
dc.creator | Tao, XM | en_US |
dc.date.accessioned | 2021-05-18T08:20:20Z | - |
dc.date.available | 2021-05-18T08:20:20Z | - |
dc.identifier.issn | 0266-3538 | en_US |
dc.identifier.uri | http://hdl.handle.net/10397/90028 | - |
dc.language.iso | en | en_US |
dc.publisher | Pergamon Press | en_US |
dc.rights | © 2021 Elsevier Ltd. All rights reserved. | en_US |
dc.rights | © 2021. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/. | en_US |
dc.rights | The following publication Wang, X., Yang, B., Li, Q., Wang, F., & Tao, X.-m. (2021). Modeling the stress and resistance relaxation of conductive composites-coated fabric strain sensors. Composites Science and Technology, 204, 108645 is available at https://dx.doi.org/10.1016/j.compscitech.2021.108645. | en_US |
dc.subject | Fabrics/textiles | en_US |
dc.subject | Polymer-matrix composites | en_US |
dc.subject | Electro-mechanical behavior | en_US |
dc.subject | Material modeling | en_US |
dc.subject | Stress relaxation | en_US |
dc.title | Modeling the stress and resistance relaxation of conductive composites-coated fabric strain sensors | en_US |
dc.type | Journal/Magazine Article | en_US |
dc.identifier.volume | 204 | en_US |
dc.identifier.doi | 10.1016/j.compscitech.2021.108645 | en_US |
dcterms.abstract | Electrical relaxation of flexible sensors using the conductive polymer composites as sensing materials has been constantly reported as major obstacle for accurate measurement, yet still roughly characterized by mechanical relaxation rather than an effective underlying mechanism. In this work, fabric strain sensors based on carbon-particle-filled conductive polymer and knitted fabric substrate were studied. A serial mechanical model of the sensor was established according to its structure, and then extended to an electromechanical model by introducing strain-resistance properties for mechanical elements. Methods were elaborated on extracting the mechanical, electrical and status parameters of the model. Tests were conducted on 5 randomly-chosen samples. The model was firstly determined for each sample using proposed methods and then implemented to predict resistance response during relaxations. Results show that the relative mean error of the predicted resistance was only 0.2%, with an averaged determination of fit 0.9230. The correlation between predicted and measured resistance was observed 0.9783 on average. Conclusion can be drawn that the model is effective to characterize the sensing mechanism and resistance relaxation of the fabric strain sensors. | en_US |
dcterms.accessRights | open access | en_US |
dcterms.bibliographicCitation | Composites science and technology, 1 Mar. 2021, v. 204, 108645 | en_US |
dcterms.isPartOf | Composites science and technology | en_US |
dcterms.issued | 2021-03-01 | - |
dc.identifier.scopus | 2-s2.0-85099229547 | - |
dc.identifier.eissn | 1879-1050 | en_US |
dc.identifier.artn | 108645 | en_US |
dc.description.validate | 202105 bchy | en_US |
dc.description.oa | Accepted Manuscript | en_US |
dc.identifier.FolderNumber | a0722-n02 | - |
dc.description.fundingSource | Others | en_US |
dc.description.fundingText | Others:National Natural Science Foundation of China (Grant No. 12002085, 51603039), sponsored by the Shanghai Pujiang Program, supported by the Fundamental Research Funds for the Central Universities, the Key Laboratory of Textile Science and Technology (Donghua University), Ministry of Education, and the Initial Research Funds for Young Teachers of Donghua University. | en_US |
dc.description.pubStatus | Published | en_US |
dc.description.oaCategory | Green (AAM) | en_US |
Appears in Collections: | Journal/Magazine Article |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Wang_Modeling_Stress_Resistance.pdf | Pre-Published version | 1.61 MB | Adobe PDF | View/Open |
Page views
112
Last Week
0
0
Last month
Citations as of Apr 14, 2025
Downloads
106
Citations as of Apr 14, 2025
SCOPUSTM
Citations
24
Citations as of May 8, 2025
WEB OF SCIENCETM
Citations
20
Citations as of Oct 10, 2024

Google ScholarTM
Check
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.