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Abstract 

Electrical relaxation of flexible sensors using the conductive polymer composites as 

sensing materials has been constantly reported as major obstacle for accurate 

measurement, yet still roughly characterized by mechanical relaxation rather than an 

effective underlying mechanism. In this work, fabric strain sensors based on carbon-

particle-filled conductive polymer and knitted fabric substrate were studied. A serial 

mechanical model of the sensor was established according to its structure, and then 

extended to an electromechanical model by introducing strain-resistance properties for 

mechanical elements. Methods were elaborated on extracting the mechanical, electrical 

and status parameters of the model. Tests were conducted on 5 randomly-chosen samples. 

The model was firstly determined for each sample using proposed methods and then 

implemented to predict resistance response during relaxations. Results show that the 

relative mean error of the predicted resistance was only 0.2%, with an averaged 
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determination of fit 0.9230. The correlation between predicted and measured resistance 

was observed 0.9783 on average. Conclusion can be drawn that the model is effective to 

characterize the sensing mechanism and resistance relaxation of the fabric strain sensors.  

Keywords: A:Fabrics/textiles; A:Polymer-matrix composites; B: Electro-mechanical 

behavior; C: Material modeling; C:Stress relaxation. 

1. Introduction 

Conductive polymer composites are ideal sensing materials, especially for wearable 

sensing applications. Thanks to the merits of low modulus, lightweight, excellent 

flexibility, easy processing, and favorable sensitivity of electrical resistance to 

mechanical deformation, they have been frequently utilized to develop numerous flexible 

sensing elements. For instance, the high-performance smart flexible strain sensors based 

on conductive polymer composites have been frequently reported in human movement 

detection, health monitoring, soft robotic skin, and human-machine interaction [1-5]. 

Moreover, the conductive polymer composites have also been further incorporated in the 

novel fabric sensing technologies. In recent years, 2 categories of fabric strain sensors 

that have been frequently reported [6-10], i.e., conductive elastomer (CE) and knitted 

piezoresistive fabric (KPF), realized by screen-printing CE on fabrics and knitting 

conductive yarns into fabrics, respectively. Those fabric sensors can easily conform to 

curved human skin and be seamlessly embedded in apparels, forming a number of 

functional and intelligent wearable apparatus.  

However, those sensors are difficult to achieve a stable response at a given 

extension/road due to the rheological property of conductive polymer composites. Stress 

relaxation of viscoelastic materials, i.e., stress decreases with time in response to the 

constant applied strain, has been frequently observed and discussed [11-13]. This 

nonlinear behavior of stress and strain for a viscoelastic material is commonly known and 

reported by either stress relaxation or creep. Since CE and KPF sensors consist of 

fabric/fiber substrate instead of just pure conductive polymer composites, constraints 

between fabric/fiber and conductive polymer would definitely affect the mechanical 

behavior of stress. Characteristics of stress relaxation of those sensors shall be 
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determined or verified, which has not been elaborately addressed according to the review 

of up-to-date relative works.  

Moreover, the objective fact that resistance of sensors also ‘relaxes’ simultaneously with 

stress at fixed strain, described by the term ‘resistance relaxation’ [14, 15], has been 

restricting those sensors in qualitative instead of quantitative and accurate temporal 

sensing applications. Prior to compensating sensors’ measurements or model 

optimization for the sensing behavior of the sensors, some researches on characterizing 

the resistance relaxation of conductive polymers have been conducted. Generally, the 

temporal stress relaxation of carbon black loaded vulcanizates or carbon black filled 

elastomers can be fitted using an exponential function with minus indexes and simulated 

with spring-dashpot systems [16-18]. As per the electrical resistance, however, there is a 

mere phenomenological conclusion that the electrical resistance and stress of the 

composite seemed decreasing in similar patterns during fixed strains. To name some of 

those researches, Wang’s group [19-23] studied carbon black filled silicone rubber, 

considered the sensing material as Maxwell and Voigt models and incorporated a linear 

combination of two negative exponential functions to fit both the data of the compressive 

stress relaxation and resistance relaxation, since it’s claimed that the mathematical 

models of the decompressive stress relaxation and the decompressive resistance 

relaxation are similar in trend. The effects of the instantaneous pressure decrement on the 

relaxation indices and coefficients of the fitted function were studied, with results 

explained only qualitatively by analyzing the changes in polymer chain segments and 

effective conductive paths of the composite. Zheng’s group [24-29] utilized a 

combination of exponential and linear functions to characterize temporal changes in the 

resistance and stress of conductive polymer over a limited time range at fixed strains, 

where the parameters in the model depend on the level of compression. However and to 

date, almost all relative works tended to believe that relaxations of stress and resistance 

are under the same or similar unknown physics bases, very few researches looked deep 

into the real mechanism of resistance relaxation of conductive polymer composites or 

fabric sensors based on conductive polymers.  
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Hence in this paper, CE fabric strain sensors based on carbon-particle-filled polymer 

were studied through mechanical and electrical modeling. A mechanical model of CE 

fabric strain sensors will be proposed firstly. Sectional gauge factors and status 

parameters will be included to provide an electromechanical mechanism of the FSSs. The 

model will be determined for each FSS through parameter identification and applied for 

prediction of variance in resistance for FSS during relaxation. The verification of the 

model will then be conducted by analyzing the error of the predicted resistance during 

relaxation. This work generally presents a physical mechanism of relaxation in electrical 

resistance of FSS, as well as establishes a reasonable and reliable connection between 

stress relaxation and resistance relaxation.  

2. Mathematical models for stress and resistance relaxation  

2.1 Fabric strain sensors  

In this paper, fabric strain sensors (FSSs, provided by AdvanPro Limited, Hong Kong, 

China) were studied. The image and schematic structure of the FSSs are shown in Figure 

1. The FSS consists of a conductive film, elastic knitted fabric, woven fabric, and silver 

wires. The conductive film was manufactured by dispersing carbon nanoparticles (CNP) 

in elastomer composites of silicone rubber (SE) and silicone oil (SO). The use of SO can 

effectively decrease the modulus of the composites to less than 1 MPa, without affecting 

the elongation capability. However, the viscosity of the conductive polymer composite 

can cause the resistance-strain hysteresis to as high as 17%. Therefore, knitted fabrics 

made from highly elastic fibers were introduced in the structure as a base for the sensitive 

conductive composite film. The sensors have shown low modulus, marginal strain-rate 

dependent, small humidity effect, and good linearity and repeatability in strain up to 50%.  

The response delay of such FSSs has been studied by Wang [30] and revealed as 0.1 ~ 

0.3 ms, negligible for capturing human movements. Calibration of the FSSs was 

conducted with INSTRON 5944 (Instron Corp., USA) within the working range of 5% ~ 

60% strain [8] along the tensile direction/length direction. In multiple times of previous 

applications, the FSSs were observed with a strain measurement error of only 5% and 

controlled hysteresis of less than 3% in cyclic tests within the working range and loading 

speed of 60 mm/min. Such FSSs have been incorporated in various applications of 
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wearable electronics and smart textiles as sensing elements [8, 30, 31] due to the merits, 

including large deformation ability with a large measurement range from zero to over 

60%, flexible, soft and good fatigue resistance. However, for low-speed loading or 

holding at certain strains, resistance relaxation starts to contribute more errors into strain 

measurement.  

 

Figure 1 Real picture (a) and schematic structure (b) of fabric strain sensors 

2.2 Mechanical model of the sensors 

Relaxations of pure conductive composites materials have been frequently reported. 

While under tension with fixed distance, the stress distribution of each slice tends to relax 

to adapt a lower energy level while the strain distribution simultaneously accommodate 

the stress, in the process of which the electrical resistance varies due to changed distances 

between conductive particles within conductive film. Hence, stress relaxations of pure 

conductive material have been reported as can be well-characterized by parallel 

mechanical models with spring-Maxwell elements [32-34] (Figure 2a), where the tension 

relaxation of the FSSs can be characterized using the following equation 

    it
i

i

t e                                                       (1) 
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where    denotes the limitation of stress at infinite time, i is coefficients, i  is the 

exponential coefficient or relaxation index. The coefficients can be obtained through 

parameter identification with real temporal stress.  

Although parallel mechanical models are very convenient to use, it’s quite difficult to be 

connected to electrical responses with reasonable physical significance. Moreover, for the 

printed/coated sensors with fabric base (Figure 1), the style of tensile deformation has 

been largely affected by the structure of the knitted fabric substrate. As can be seen in 

Figure 2b, the surface of the sensor (conductive film) reveals obvious grid pattern, 

resembling that of the knitted fabric underneath. Thanks to the fabric substrate, width of 

grids changed slightly while the length increased significantly under longitudinal tension. 

In this condition, stress and electrical relaxation of the sensor (composites and fabric 

substrates together) can be regarded as caused by the strain redistribution in the length 

direction. Hence, the sensor can be seen as comprised by multiple identical parallel slices 

in the length direction, where each slice is a fundamental rheological element containing 

constant number of conductive tunnels. For one single longitudinal element, the regions 

adhered to fibers are with higher modulus and perform more like a spring-dashpot 

(rheological) while the regions between fibers are with lower modulus, respond fast to 

applied strain and act more like spring (elastic).  
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Figure 2 Mechanical models of FSSs: (a) Commonly-used parallel mechanical model, 
(b)Surface of the printed fabric strain sensor; (c) Serial mechanical model of FSS and (d) 

The 2-order serial model  

Hence, it’s reasonable to incorporate a serial model of the sensor constructed by spring 

and Voight elements, as shown in Figure 2c. In this model, the springs represent 

subsections with a lower modulus that can response to strains instantly (i.e., regions 

adhered to fibers), while the Voight element represents that with higher modulus and 

slower response to strains (i.e., regions between fibers). It’s worth mentioning that this 

serial model is naturally a complex simulation model, but can be further simplified to 

only a limited number of differentiated elements. To understand this, assume the FSSs 

are fabricated with perfectly periodical knitted fabric substrate and perfectly evenly 

coated conductive composites. In this condition, all elements of the same type are 

identical and can be combined, leading to a 2-unit model with only one combined Voight 

element and one combined spring element. This is a 1-order model since there is only one 

relaxation term according to equation (1). It’s not this case, however, for real sensors. 

Due to many reasons, elements are not ideally identical, and more feature groups shall be 

considered to reflect the differences among Voight elements, leading to differentiated 
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combined elements (naturally significantly different from each other) in a higher-order 

model, where the order depends on the conformity of the model to actual data. It’s not 

direct but easy to understand that howsoever high order the model is, the temporal stress 

can always be expressed in the same form as in above equation (1), i.e., by the 

summation of a number of relaxation terms, only that i and i  are of totally different 

physical significances. Excellences of the model are that, not only it can successfully 

reflect the deformation styles of the sensors, but also that in this serial configuration, 

tension relaxation of the sensor can be represented by strain shift of elements, which can 

be then related to variation of electrical responses, so that the mechanical-electrical 

mechanism can be theoretically derived. In one word, this serial model can provide an 

approximation of the rheological behavior of the polymer-coated fabric sensors.  

Since specifically for FSSs, it has been empirically found in previous work and 

repeatedly confirmed that 2 relaxation terms were good enough to characterize the short-

term temporal stress relaxation in short-time (with r2 higher than 0.995) [35], the 

proposed serial model can be largely simplified to be with only 3 subsections (1 spring 

element and 2 Voigt elements, as in Figure 2d). Given the stiffness and damping 

coefficient for the subsections, the tension of this model can be easily derived after 

solving the displacements of two pistons of dashpots, which are governed by 

 0 1 2 1 1 1 1

1 1 1 1 2 2 2 2

1 0 1 0 2 0 2 0, =st t

K l s s k s s

k s s k s s

s s s



 

 

                
 



 

， ，

                                      (2) 

where K is the stiffness of spring element in the middle, ,i ik  are stiffness and damping 

coefficients for the Voight elements at both ends, 0l is the initial elongation of the spring 

before relaxation happens, 1 2,s s are displacements of the 2 pistons of dashpots, also the 

displacements of the interface between adjacent subsections. Boundary condition of 1 2,s s  

at time 0 are assumed 1 0 2 0,ss ， ， , respectively. With the above differential equations, the 

time-dependent displacement 1 2,s s can be solved and expressed by 
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1 2

1 2

1 11 12 13

2 21 22 23

t t

t t

s C e C e C

s C e C e C

 

 

 

 

   


  
                                             (3) 

The parameters can be obtained using  
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   

    

 

Hence, once 1 2,s s  are determined, the tension of the sensor during relaxation can be 

derived as 

   
 

1 2

1 2

1 1 1 1

1 1 1 11 1 1 2 12 1 13

1 2=

t t

t t

F k s s

k C e k C e k C

e e

 

 



   

  

 

 

   

     

    



                           (4) 

where   0

1 2

1 1 1
l

k k K

  
 

,  1 1 1 1 11k C    ,  2 1 1 2 12k C    .  
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2.3 Electromechanical model of the sensors 

This proposed serial mechanical model as above can be further extended to yield an 

electromechanically model of the FSSs, which involves tension, electrical resistance, and 

the connection between. The basic idea is to consider the time-dependent displacement of 

the pistons of the dashpots, which are attributed to the increase of resistance for the 1st 

and 3rd sections of the spring-dashpot element as well as decrease of resistance for the 

middle section of spring elements. According to the theory of tunneling current [36]， 

 2 2

8
exp

3
p

t

N hs
R s

N a e

 


 
  
 

                                             (5) 

where R is the equivalent resistance of the composite/FSS; pN is the number of 

conductive particles forming a single conductive path parallel to the conductive direction; 

tN is the number of conductive pathways; h is the Plank’s constant; s is the least distance 

between conductive particles or domains; 2a is the effective cross-sectional area in which 

the tunneling current passes through; e is the electron charge, and the constant  is 

defined as
4

2m
h

  , in which m is the electron mass and  is the height of potential 

barrier between adjacent conductive particles. This equation generally governs the 

correlation between elongation and resistance for CE based on polymers filled with 

conductive particles inside. Please note that the above equation of tunneling resistance is 

applicable for elongated CE in FSS under the condition that the number of conductive 

particles in a conductive track as well as that the numbers of conductive tracks remain the 

same. Consider a strain exerted on FSS, the resistance can be given as 

    2 2

8 1+
exp 1+

3
p

t

N hs
R s

N a e

 
 


 

  
 

                                       (6) 

which is generally linear within the working range of FSS, and can be approximated by  

 0 0 01+R L R L                                                    (7) 
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where   is the gauge factor of resistance to elongation, 0R is the initial electrical 

resistance of FSS, 0 ,L  are the initial length of FSS and applied strain, respectively. The 

above relationship between resistance and strain has been constantly confirmed and 

utilized by previous works [8, 31, 37].  

To connect creep deformation of different sections with variance of electrical resistance, 

let 10 20 30, ,r r r be the initial electrical resistance of spring-dashpots and spring elements, 

respectively. For fully relaxed FSS without tension, we have  

10 20 30 0r r r R                                                            (8) 

where the summation of sectional resistance equals total initial resistance 0R . Consider a 

perfect relaxation, i.e., no initial displacement occurs from the strain of 0 , we have the 

temporal resistance during relaxation expressed by 

  0 1 1 2 2 3 3+R t R s s s                                                    (9)

 
where 1 2 3, ,   are the gauge factor of resistance to elongation of corresponding sections. 

Hence, once the time-dependent displacements 1 2,s s are known, the temporal electrical 

resistance of the FSS can be determined. It can also be easily seen that 

0 1 1 2 2 3 3L s s s       . The above equations and derivations together establish 

connections from tension to creep deformation of sensing materials, and then the 

resistance relaxation of FSSs.  

Substitute 1 2,s s  with an explicit expression as obtained in the mechanical model of FSS 

as in (3), the resistance of FSS during relaxation can be obtained in similar form with the 

same relaxation indices 1 2,  : 

    1 2
1 2

t tR t R r e r e                                                 (10) 

where  R  denotes the limitation of resistance at infinite time, ir and i are coefficient 

and relaxation indices, respectively. 
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2.4 Methods to identify parameters of the electromechanical model 

As aforementioned, the time-dependent displacements of pistons of spring-dashpot 

sections 1 2,s s serve as the crucial ties between temporal tension F  and electrical 

resistance R  of the FSSs. The mechanical and electrical parameters can be identified 

based on the temporal tension and resistance data provided by the relaxation test (Section 

3.1). Through non-linear curve-fitting of the real-time measured tension according to 

equation (1) based on the least square method,   1 1 2 2, , , ,      can be directly 

obtained. To determine the status parameters 1 2,s s , the following 5 simultaneous 

equations involving the 5 structural parameters, i.e., 1 1 2 2, , , ,k k K  , should be considered. 

 

 

 
 

 

1 11 12 21 22

2 11 12 21 22

1 1 1 1 11

2 1 1 2 12

0

1 2

1

2
1

2

1 1 1

k C

k C

l

k k K

     

     

  

  




     



    
  
  


 
  


                                         (11) 

Where ,  are the same as in equation (3). Further given another two initial status

1 0 2 0,s s， ， , the above equations can give full determination of the mechanical model of FSS. 

However, it’s not appropriate to solve them from the 5 directly obtained parameters 

  1 2 1 2, , , ,     , according to equation (11). In this case, other equations involving 

the tension relaxation at different strains shall be included. Since one data set of tension 

relaxation would introduce another 2 status parameters 1 2,s s but at the same time 

provides another 3 coefficients 1 2, ,   (related to the same structural parameters 

1 1 2 2, , , ,k k K  ) and establish 3 more equations, 3 different strains are theoretically 

compulsory to give all the mechanical parameters and initial status for the target sensor.   
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Luckily, since 2  was empirically observed as close to zero and 1 relatively high 

compared to the stiffnesses, it can be easily derived that status 1s is always a negligible 

small value. In this scenario, tensions at 2 different strains are enough to identify all the 

mechanical parameters and corresponding initial status, based on the following equation 

set: 

 

 

 
 
 
 

1 1

2 2

1 1

2 2

1 2

1 11 12 21 22

2 11 12 21 22

1, 1 1 1 11,

1, 1 1 2 12,

2, 1 1 1 11,

2, 1 1 2 12,

1 2
, ,

1 2 1 2

1

2
1

2

or
1 1 1 1 1 1

k C

k C

k C

k C

l l

k k K k k K

 

 

 

 

 

     

     

  

  

  

  

  


     


     

  
  


 
  


 
    


                        (12)

 

where , ,,
n ni ijC  are the coefficients (under the same definition as in equation (3) ) for the 

tension relaxation released from strain , 1,2n n  . The above equation set can properly 

give all unknown mechanical and status parameters.  

To further establish the electrical parameters of the FSS model, the 3 subsections’ gauge 

factors (sensitivity of resistance to strain) shall be further determined. Similarly, the 

resistance during relaxation can be curve-fitted to identify the parameters of  R  , 1r

and 2r first, according to equation (10). Later, the above coefficients were connected with 

creep deformation 1 2,s s , while mechanical parameters and the 3 electrical parameters

1 2 3, ,    shall be identified, by considering another simultaneous set of equations as 

below 
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   
   

   

1 1 3 11 2 3 21

2 1 3 12 2 3 22

0 3 0 0 1 13 2 23 3 00 or

r C C

r C C

R R l R R C C l

   
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   

   


   
       

                 (13) 

where the last two equations are equivalent to each other,  0R is the resistance of 

stretched FSS before relaxation happened. The parameters on left hands can all be 

directly obtained from the observed data or through fitting, while right hands of equations 

are all related to the 3 unknown parameters 1 2 3, ,    and other mechanical parameters. 

The above equation sets are appropriate to determine the all the unknown parameters of 

the model of FSS.  

In the next section, parameters of the mechanical and electromechanical models are to be 

identified using the temporal tension and electrical resistance measured from the 

relaxation test at the strain of 1 . The determined model is then applied to predict the 

resistance during relaxation at another strain 2 . Error analysis would then be 

implemented to evaluate the effectiveness of the determined models, by analyzing the 

difference between actually measured resistance and predicted resistance. The schematic 

routine of the model determination and validation is shown in Figure 3. 

 

Figure 3. Schematic diagram of the model determination (a) and model application (b) 
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All fitting and solution process were realized by self-programmed functions and scripts 

with MATLAB. 

3. Experiment and results 

3.1 Protocol of the relaxation test and experimental setup 

5 FSSs (No.1 ~5) with the sensing area of 8*30 mm2 belong to 2 batches were randomly 

selected for this study. In order to derive and verify of the electromechanical model of 

FSS, relaxation tests were conducted. INSTRON 5944 was used to provide the condition 

of fixed strain and measure temporal tension of FSSs. Before the relaxation tests, FSS 

underwent 10 cycles of loading-unloading by INSTRON between 0% strain and 60% 

strain at a speed of 60mm/min to sufficiently prepare the fibers of samples for stretching 

and stabilize the strain-resistance property of coating CE of FSSs [8]. After pretreatment, 

the FSS takes 10 min to rest with no stretching till no more obvious changes in electrical 

resistance. 

To study the stress and resistance relaxation, FSS was fast stretched by INSTRON 5944 

to the target strain (e.g., 30%, 60%) and then hold steady for 60 seconds. The ramp speed 

of INSTRON during stretching was set to as high as 120mm/s. Load (tension) and 

resistance of FSSs during the test was detected and stored simultaneously by the 

INSTRON associated with Keithley 2010, with a sampling frequency of 50 Hz.  

The experimental setup was similar to that of our previous work [35], only that 

INSTRON 5944 and Keithley 2010 were utilized as the tensile instrument and data 

acquisition device. 

A demonstration of the original data of tension (for single-axis elongation, tension 

represents stress.), and resistance variation with respect to time was plotted in Figure 4. 

The data belongs to sample No.1 during the relaxation test of 30% strain.  
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Figure 4. Raw data of tension a) and resistance b) obtained during the relaxation test  

It can be clearly seen from the figure that the while FSS maintained a constant strain 

during hold, both tension and resistance decreased simultaneously with time. Meanwhile, 

the speed/rate of decreasing in tension and resistance also reduced with time. 

3.2 Identification of mechanical and electrical parameters 

Physical significance and mechanism of the newly proposed model have been elaborated 

above. The three coefficients   1 2, , ,   and two relaxation indices 1 2, 
 
can be 

directly fitted with the temporal tension. According to equation (3), the relaxation indices 

1 2,  take no effect from the unknown status 1 2,s s  as well as the initial elongation 0l and 

thus can be utilized as a preliminary indicator of the validity of the model. Each FSS was 

tested in relaxation at two different strain levels, 30% and 60%, the fitted parameters can 

be retrieved and summarized in Table 1. 
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Table 1 Directly identified parameters using temporal tension relaxation at different 

strain levels  

Sample  
Strain 

level 
    1  2  1  2  

FSS 

No.1 

30% 0.8044 0.0759 0.0955 0.8219 0.04563 

60% 1.5909 0.1458 0.1818 0.8049 0.04740 

FSS 

No.2 

30% 0.8324 0.0907 0.1134 0.7878 0.04658 

60% 1.6652 0.1729 0.2229 0.7854 0.04536 

FSS 

No.3 

30% 0.7177 0.0489 0.0781 0.7781 0.04767 

60% 1.5710 0.1473 0.1829 0.8158 0.04904 

FSS 

No.4 

30% 0.6659 0.0743 0.0989 0.8124 0.04869 

60% 1.3440 0.1324 0.1692 0.8368 0.04668 

FSS 

No.5 

40% 0.9393 0.1003 0.1248 0.9989 0.04670 

60% 1.4204 0.1473 0.1729 0.9850 0.04700 

 

The model fits well for relaxation data, with all goddesses of fittings (r2) exceed the high 

value of 0.9960, as demonstrated in Figure 5, confirming that 2 relaxation indices are 

good enough to characterize the decreasing of tension in short future (within 60s). 

Furthermore, it can be seen that the relaxation indices 1 and 2 generally maintained 

certain values, with a max discrepancy of 3% for 1 and 4.3% for 2 , preliminary accords 

with the proposed model. Generally, those obtained in the larger strain of 60% were kept 

for later identification of structural parameters of the model. This is to avoid large fitting 

errors while extracting the above parameters since both the signals of temporal measured 

tension and trends of curves were more obvious at the larger strain. Meanwhile, the value 

of 1  is 20 times the value of 2 , which is about close to zero, indicating a relatively high 

damping coefficient of 1  according to equation (13). 
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Figure 5. For demonstration of parameter extraction: curve fitting of tension relaxation 

of FSS No.1 at 60% strain.  

As aforementioned, data of tension relaxation at 30% and 60% strains were to be 

included to identify all the electromechanical parameters and corresponding initial status. 

To facilitate the solution of equations and searching of the roots, a 3-step scheme was 

considered. Firstly, the 5 mechanical parameters were preliminarily estimated according 

to equation (4), under the assumption that initial status 1,0 2,0,s s are forced to be zero. Then, 

the 5 mechanical parameters and 4 initial status at 2 strain levels were solved according 

to equation (12), searched from the initial start point of the estimated parameters from 

step 1. Last, with temporal electrical resistance at 30% strain, another searching was 

started from the mechanical and status parameters obtained from step 2, for determining 

all parameters according to equation set (13).  

The parameters as well as initial status obtained from the 2nd and 3rd steps were 

summarized in Table 2 and Table 3, respectively. 
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Table 2. Identified mechanical parameters of the FSS (step 2) 

 
1k  

N/mm 

1  

N.s/mm 
2k  2  K  1 0s ，  

11,s   2 0s ，  
22,s   

FSS No.1 1.1198 26.8702 1.3126 1.7751 0.1290 

0 

0.0933 

0 

0.2401 

FSS No.2 1.0606 26.1734 0.9633 1.4035 0.1423 0.3512 0.7628 

FSS No.3 1.1486 26.5290 1.1432 1.6051 0.1256 0.3746 0.3543 

FSS No.4 1.0107 24.0153 0.3865 0.6294 0.1315 1.1464 2.9539 

FSS No.5 1.0738 25.6492 0.7252 0.8640 0.1314 0.4172 1.2367 

 

Table 3. Identified mechanical and electrical parameters of the FSS (step 3) 

 
1k  

N/mm 

1  

N.s/mm 
2k  2  K  1,0s  

11,s   2,0s  
22,s   1  2  3  

FSS No.1 1.1193 26.8586 1.3413 1.8102 0.1287 

0 

0.0377 

0 

0.2401 3.8803 1.8155 6.0014 

FSS No.2 1.0611 26.1852 0.9593 1.3986 0.1424 0.3939 0.7492 4.1415 2.1816 6.4305 

FSS No.3 1.1574 26.7331 1.1796 1.6619 0.1249 0.1745 0.3867 5.3339 1.4075 8.4353 

FSS No.4 0.9898 23.5217 0.8051 1.1145 0.1120 0.2502 0.7783 2.1751 2.2865 5.2135 

FSS No.5 1.0708 25.5989 1.0603 1.1951 0.1245 0.0091 0.6818 1.2403 1.3720 4.1386 

 

The mechanical parameters shall be consistent in value. However, there is apparent 

difference in mechanical parameters (especially for 2 2 2, ,k s ) for FSS No.4 and 5 

between 2nd and 3rd steps, larger than other sensors. The reason can be attributed to that 

the last 2 sensors belonged to a different sample batch from the first 3.  

It can be seen from Table 3 that for the tested FSSs, the structural parameters are close to 

each other, while the gauge factor of electrical resistance to strain was observed with 

higher variance, ranging from 4.1 Khom to 8.4 Khom. FSS No.4 and No.5 were observed 

with a higher relative reduction of resistance during relaxation ( 0/R R  ), which is in 

accordance with the relatively higher initial statuses caused by the lower stiffness and 

damping coefficients of the 2nd spring-dashpot element.  
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3.3 Verification of the electromechanical model of FSSs 

Once the mechanical, electrical parameters as well as status parameters are identified, the 

model of FSS is established, which can be used to predict responses of FSS subsequently. 

In this work, the tension relaxation at 30% and 60% strain were used to identify the 

model’s structural parameters and initial statuses. The resistance relaxation at strain of 30% 

was used to determine the gauge factor 1 2 3, ,    of the 3 subsections. The established 

model will be implemented to calculate the variation of resistance during relaxation at 30% 

strain, which would be compared with the real measured temporal resistance. The 

difference between predicted and measured resistance would be analyzed for verification 

of the model.  

With the measured resistance and predicted resistance were plotted and compared in 

Figure 6, demonstrated by FSS No.1. The errors were indicated by the maximum error, 

mean, and standard deviation of error, the mean square error. The correlation and 

determination coefficient between the predicted resistance and measured resistance was 

compared to that between measured tension and resistance since many previous works 

arbitrarily considered tension and resistance vary in a similar way during relaxation. For 

the 5 FSSs, the error indicators were computed and summarized in Table 4. The 

predicted and measured resistances at 60% strain were compared in Figure 6, along with 

the comparison of the normalized measured tension and resistance.  

Table 4. Error indicators between measured and predicted resistance during relaxation at 

60 % strain 

 Max.error
(Khom) 

Mean.error 
(Khom) 

Std 
(Khom) 

Mse 
(Khom) 

Cor. Coef 
*1 

Cor.Coef 
*2 

R2 

*3 
R2 

*4 
FSS No.1 0.6476 0.1018 0.2206 0.0590 0.9392 0.9749 0.5954 0.9379 

FSS No.2 0.8038 0.1430 0.2287 0.0727 0.9298 0.9774 0.6521 0.9363 

FSS No.3 1.2756 0.3101 0.4045 0.2595 0.8870 0.9602 0.4166 0.8694 

FSS No.4 0.5382 0.0991 0.1716 0.0392 0.9368 0.9887 0.8013 0.9689 

FSS No.5 0.6260 0.2894 0.1643 0.1107 0.9833 0.9904 0.5507 0.9025 

*1 The correlation between measured tension and resistance; *2 The correlation between 

the predicted and measured resistance; *3 Determination coefficient (R2) of using 
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measured tension to characterize the resistance relaxation; *4 Determination coefficient 

(R2) of using the model to characterize the resistance relaxation. 

 

Figure 6. Typical demonstration of model verification: the comparison between 

measured and predicted resistance a) as well as that between normalized tension and 

resistance b). The data belongs to FSS No.1 at the 60 % strain.  

It can be seen from the table that the max error of 1.2756 Khom between measured and 

predicted resistance occurred for FSS No.3. This is because FSS No.3 has high initial 

resistance (48 Khom, and released from 173 Khom), a higher gauge factor (averaged 7.99 

Khom/mm), both could lead to a higher variation of resistances. The mean error is 0.1887 

Khom (relatively 0.2%), with the averaged determination of fit of 0.9230. These results 

indicate that the model is effective to characterize the variation of both the stress and 

resistance during relaxation. To show the model is much more effective to predict or 

characterize the resistance relaxation than just according to the similarity between curves 

of stress and resistance relaxation [14, 19, 34], correlations between predicted and 

measured resistance have been calculated and found with an averaged value of 0.9783, 

significantly higher than that between measured tension and resistance (averaged 0.9352). 

The averaged determination coefficient 0.9230 is also much higher than that when using 

stress relaxation to characterize the resistance relaxation (averaged 0.6032). 
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4. Discussions 

As shown in above, the proposed electromechanical model has established a clear 

connection between stress relaxation and resistance relaxation for sensors based on 

conductive polymers. Once the mechanical, electrical as well as status parameters of the 

model are determined, resistance error caused by creep of conductive polymers can 

theoretically be evaluated and compensated. Furthermore, with sensor fusion technology 

such as the Kalman filtering method, it’s feasible to solve the real temporal stimulation, 

i.e., the applied strain, through estimating the status parameters from an array of coupled 

sensors. This would be a potential solution for polymer sensors to give accurate 

measurements, especially for urgent demanded wearable applications such as accurate 

tracking of human joint angles or motion styles for diagnoses or rehabilitations purposes.  

However, it should be pointed out that the aside from the status parameters, which are 

influenced by loading history, the mechanical or electrical parameters may also vary. As 

an energy input-output system, the steady-state intrinsic energy or temperature of the 

sensor is jointly-governed by styles of extension (speed, strain, etc., related to intensity of 

intermolecular friction) and speed of heat dissipation. Hence, pretreatment and 

determining the current parameters for the model are both suggested as compulsory. 

Otherwise, the real-estate electromechanical property, such as gauge factor of resistance 

to strain, may shift with time, indicating instability of electromechanical parameters. To 

illustrate this, FSS No.6 further started from no pretreatment and underwent consecutive 

relaxation tests as indicated in Figure 7a.  
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Figure 7. (a)Test protocol of FSS No.6 and (b) Difference of strain-resistance properties 

between the working range of 0~30% and 0~60% 

Unlike the previous test, 2.5 cycles of elongations for determination of gauge factor 

followed each relaxation tests. It was found that the 2 tension relaxations along with 

resistance relaxations cannot give a solution of electromechanical and status parameters. 

It was then observed that the overall gauge factor of resistance to strain significantly 

changed, from 2.8718 Khom/mm to 3.2421 Khom/mm, with a relative rising of as high as 

13%, as shown in Figure 7b. This basically failed the assumption of modeling since the 

electromechanical properties have shifted. Hence, to make the model applicable, 

stabilization by pretreatment as well as determination of current electromechanical 

parameters are necessary. 

5. Conclusion 

In this paper, mechanical and electrical relaxations of CE fabric strain sensors based on 

carbon-particle-filled polymer and knitted fabric substrate were studied through electrical 

and mechanical modeling. A serial mechanical model of CE fabric strain sensors was 

firstly proposed. Sectional gauge factors and status parameters were then included to 

provide an electromechanical mechanism of the FSSs. The model was determined for 

each FSS through parameter identification and applied for prediction of variance in 

resistance for FSS during relaxation.  
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Results show that the relative mean error of the predicted resistance by the model was 

only 0.2%, with the averaged determination of fit 0.9230, much higher than that when 

using stress relaxation to characterize the resistance relaxation (averaged 0.6032). 

Moreover, the correlation and determination coefficient between predicted and measured 

resistance was observed 0.9783 on average, higher than that between measured tension 

and resistance (0.9352). Hence, the model is effective to reveal the sensing mechanism 

and characterize the resistance relaxation of the sensors, other than using the stress 

relaxation as in previous works. These findings reveal that creep deformation of different 

subsections was the reason of the resistance relaxation. In this perspective, higher 

elasticity and lower damping coefficient of the sensing area shall diminish the resistance 

relaxation. Unlike previously published works, this simple but effective model is derived 

based on parameters with physical significance, other than phenomenological similarity.  

It’s suggested that the validity of using the model to predict later electromechanical 

behavior of FSSs highly depends on the stability of the electromechanical property, such 

as the gauge factor of resistance to strain.  

Generally, the methods and results of this work will inspire characterizing the resistance 

relaxation of other flexible sensors based on conductive polymers. To enhance the 

potential of the model in providing accurate measurements of strains, further study of the 

model’s responses under dynamic stretching has been scheduled in future work.  
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