Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/89707
DC FieldValueLanguage
dc.contributorSchool of Hotel and Tourism Managementen_US
dc.creatorSong, Hen_US
dc.creatorLiu, Aen_US
dc.creatorLi, Gen_US
dc.creatorLiu, Xen_US
dc.date.accessioned2021-05-05T04:56:55Z-
dc.date.available2021-05-05T04:56:55Z-
dc.identifier.issn1099-2340en_US
dc.identifier.urihttp://hdl.handle.net/10397/89707-
dc.language.isoenen_US
dc.publisherJohn Wiley & Sonsen_US
dc.subjectBaggingen_US
dc.subjectBayesianen_US
dc.subjectForecastingen_US
dc.subjectGeneral-to-specificen_US
dc.subjectTourism demanden_US
dc.titleBayesian bootstrap aggregation for tourism demand forecastingen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage914en_US
dc.identifier.epage927en_US
dc.identifier.volume23en_US
dc.identifier.issue5en_US
dc.identifier.doi10.1002/jtr.2453en_US
dcterms.abstractLimited historical data are the primary cause of the failure of tourism forecasts. Bayesian bootstrap aggregation (BBagging) may offer a solution to this problem. This study is the first to apply BBagging to tourism demand forecasting. An analysis of annual and quarterly tourism demand for Hong Kong shows that BBagging can, in general, improve the forecasting accuracy of the econometric models obtained using the general-to-specific (GETS) approach by reducing, relative to the ordinary bagging method, the variability in the posterior distributions of the forecasts it generates.en_US
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationInternational journal of tourism research, Sept-Oct. 2021, v. 23, no. 5, p. 914-927en_US
dcterms.isPartOfInternational journal of tourism researchen_US
dcterms.issued2021-09-
dc.identifier.scopus2-s2.0-85104543023-
dc.identifier.eissn1522-1970en_US
dc.description.validate202105 bcwhen_US
dc.description.oaNot applicableen_US
dc.identifier.FolderNumbera0876-n01-
dc.identifier.SubFormID2091-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextP0013967en_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2023-10-31en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2023-10-31
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

41
Citations as of Jun 26, 2022

SCOPUSTM   
Citations

4
Citations as of Jun 30, 2022

WEB OF SCIENCETM
Citations

4
Citations as of Jun 30, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.