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Abstract 

Limited historical data are the primary cause of the failure of tourism forecasts. 
Bayesian bootstrap aggregation (BBagging) may offer a solution to this problem. This 
study is the first to apply BBagging to tourism demand forecasting. An analysis of 
annual and quarterly tourism demand for Hong Kong shows that BBagging can, in 
general, improve the forecasting accuracy of the econometric models obtained using 
the general-to-specific (GETS) approach by reducing, relative to the ordinary bagging 
method, the variability in the posterior distributions of the forecasts it generates. 
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1. Introduction 

As part of the vigorous development of the service industry, tourism has brought 
significant employment and income opportunities to destination economies. 
According to the World Travel & Tourism Council (WTTC), the total revenue of the 
global tourism industry exceeded US$8.9 trillion and generated 330 million tourism-
related jobs in 2019 (WTTC, 2019). Accurate forecasts can provide useful 
information on future tourism demand and help practitioners, policymakers, and 
stockholders in the decision-making process (Song et al., 2012). 

The general-to-specific (GETS) approach combined with the autoregressive 
distributed lag (ADL-GETS) specification is frequently used in tourism forecasting. 
The ADL-GETS model performs relatively well in forecasting tourism demand 
(Campos et al., 2005; Li et al., 2005; Narayan, 2004; Song & Witt, 2003). However, it 
suffers from the unstable decision rule problem. Small changes can significantly 
influence the model reduction process of GETS during the data training step, resulting 
in the possible exclusion of important explanatory variables from the final model.  

Bagging, introduced by Breiman (1996), may offer a solution to the unstable rule 
problem. Bagging is especially useful for procedures such as decision tree models and 
artificial neural network models that are sensitive to small changes in training data. 
Bühlmann and Yu (2002) provided theoretical proof and empirical validation of the 
effectiveness of bagging for modelling unstable procedures. In recent years, 
researchers have verified that bagging (hereafter ordinary bagging) can overcome the 
unstable problem in the ADL-GETS model in tourism forecasting (Athanasopoulos et 
al., 2018).  

However, ordinary bagging may not be effective when the sample size is small (Clyde 
& Lee, 2001). If the observations in the bootstrap sample do not contain enough 
variability, the models produced by the ordinary bagging procedure may differ from 
each other. Therefore, it can be difficult for ordinary bagging to estimate the true 
values (Fushiki, 2010). 

The Bayesian bootstrap method was first proposed by Rubin (1981), and it has since 
proved to be more theoretically complete and effective than ordinary bagging, 
especially with small samples (Clyde & Lee, 2001; Lee & Clyde, 2004). In tourism 
forecasting, historical tourism demand series tend to be relatively short and highly 
volatile. To the best of our knowledge, no studies have used BBagging to forecast 
tourism demand. This paper verifies the performance of BBagging in forecasting 
tourism demand.  

This paper is organised as follows. The next section reviews research on tourism 
demand modelling and forecasting with a particular focus on the GETS model, 
ordinary bagging, and BBagging. The third section describes the methodology and 
data. The fourth section presents the empirical results, and the last section offers 
conclusions and research limitations. 
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2. Literature Review 

Over the last two decades, a variety of methods have been used to forecast tourism 
demand (Song et al., 2019). Tourism forecasting models can be divided into three 
categories: time series, econometric, or artificial intelligence (Wu et al., 2017). 
Econometric models have an advantage over time series models in that they can 
postulate causal relationships between tourism demand and explanatory variables. 
Econometric models also allow for the estimation of tourism demand elasticities, 
which can provide useful information for policymakers. In forecasts of destination-
level tourism demand, the main influencing factors are the income (or per capita 
income) of the origin country/region, the price of the destination relative to the price 
of the origin country/region, and the prices of the substitute destinations (Crouch, 
1992; Song & Li, 2008). These factors are derived from neoclassical demand theory 
in economics and therefore have a strong theoretical foundation. Peng et al. (2014) 
showed that, in general, econometric models are superior to the other two types of 
models in terms of forecasting performance.  

 

2.1 The ADL-GETS model  

A number of studies have applied GETS (Hendry, 1995) to tourism demand 
forecasting (Song & Witt, 2003). GETS modelling is an extension of the general 
tourism demand model that includes all of the potential explanatory variables 
suggested by demand theory, the lagged dependent and explanatory variables that 
account for the dynamic features of the time series, and one-off event dummies. This 
model specification is known as the ADL model and is estimated by the ordinary least 
squares (OLS) method. The general ADL model is recursively estimated to eliminate 
non-significant or incorrectly signed variables until it reaches the final specification, 
in which all of the variables play an important role in determining the dependent 
variable (Song, Witt, & Li, 2003).  

The GETS approach, particularly the ADL-GETS model, has been widely used in 
tourism demand modelling and forecasting for different destinations, such as Hong 
Kong (Song, Wong & Chon, 2003), Thailand (Song, Witt & Li, 2003), Fiji (Narayan, 
2004), and China (Lin et al., 2015; Song & Fei, 2007). The GETS model has also 
been used to investigate the influence of the 2008 Global Financial Crisis on the 
tourism and hospitality industry in Asia (Song et al., 2010; Song et al., 2011; Song & 
Lin, 2010) and the UK (Page et al., 2012), and to examine the global impact of 
terrorism attacks on inbound arrivals (Liu & Pratt, 2017). Liu et al. (2020) 
summarised the performance of the ADL-GETS model in a large-scale ex ante 
forecasting project. They found that the variation in the tourism demand and gross 
domestic product (GDP) of source markets and the covariation between tourism 
demand and GDP have significant effects on the forecasting accuracy of the ADL-
GETS model over different horizons. In other words, some factors, such as 
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fluctuations in historical data, can affect the stability of the forecasting performance in 
ways that are beyond the control of the model. 

A number of tourism forecasting researchers are trying to address the forecasting 
performance instability of the ADL-GETS model. Wong et al. (2007) and Song, Witt, 
Wong, and Wu (2009) combined the forecasts of the ADL-GETS model with other 
methods to improve forecasting stability. Li et al. (2019) combined interval forecasts 
to enhance the stability. Lin et al. (2014) introduced judgemental forecasts to integrate 
experts’ opinions into the statistical forecasts generated by the ADL-GETS model. 
The latter approach has been adopted to establish a web-based tourism demand 
forecasting system that integrates a database, an ADL modelling procedure, and a 
judgmental adjustment module (Song et al., 2008, 2013). Although the above methods 
use advanced econometric techniques to improve the forecasting performance of the 
single ADL-GETS model, the forecasts are still generated based on the one-off 
estimation of the ADL-GETS model. Thus, these methods do not address the 
instability of the ADL-GETS model. 

 

2.2 Ordinary Bagging 

Breiman (1996) and Bühlmann and Yu (2002) proposed using the ordinary bagging 
method to improve the instability of the GETS model. Ordinary bagging involves 
generating several distinct training series from the original dataset, estimating a 
defined model multiple times, and producing forecasts based on the estimated models. 
The final forecasts are calculated by averaging all of the forecasts generated by the 
estimated models. Bühlmann and Yu (2002) provided a theoretical illustration of how 
ordinary bagging could improve prediction stability and reduce variance in 
regression-based predictions in difficult decision problems. Inoue and Kilian (2008) 
elaborated on how ordinary bagging can reduce errors in out-of-sample inflation 
forecasts using the GETS algorithm. Lee and Yang (2006) also demonstrated that 
combining ordinary bagging with asymmetric cost functions can improve binary 
prediction accuracy, which they verified with Monte Carlo simulations and an 
empirical study of S&P500 and NASDAQ stock indices. In addition, Petropoulos et 
al. (2018) showed that ordinary bagging reduces uncertainties associated with the data 
generating process, model specification, and model parameter estimation in time 
series forecasting. 

Recent tourism studies have introduced ordinary bagging to the ADL-GETS 
modelling and forecasting process. For instance, Athanasopoulos et al. (2018) 
demonstrated that ordinary bagging improves the ADL-GETS model’s performance 
in Australian tourism demand forecasting. However, Song et al. (2017) found that 
ordinary bagging fails to realise the expected improvement when it is incorporated 
into the ADL-GETS model using quarterly data on Hong Kong visitor arrivals as 
sample sets. This contradiction reveals the potential problems caused by high 
volatility in tourism datasets at the macro and micro levels. They are sensitive to 
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seasonality and the effects of one-off events, such as public health pandemics, wars, 
and natural disasters (Song & Lin, 2010). In addition, data collection methods and 
terminological definitions change over time in many destinations, resulting in shorter 
and less consistent time series (Song et al., 2019). In these cases, bootstrap samples 
may not contain enough useful information, leading to incorrect modelling in the 
ordinary bagging process. Therefore, further research is needed on the validity and 
reliability of bagging-related methods in tourism demand forecasting. 

2.3 BBagging 

Clyde and Lee (2001) proposed BBagging, which integrates Bayesian bootstrapping 
(Rubin, 1981) into the bagging procedure. Lee and Clyde (2004) proved that, in 
theory, BBagging is better defined than ordinary bagging. Instead of resampling data 
from the same set of observations, BBagging weights each observation according to 
the derived posterior distribution and calculates a weighted model that provides the 
posterior distributions of the parameters and predicted values. Any unstable algorithm 
that can accept weights can be combined with BBagging, which makes the method 
easy to use. For example, Clyde and Lee (2001) used three datasets on drug uptake in 
rat livers, ozone concentration at ground level, and the prevalence of diabetes in a 
female population. They found that BBagging generates a smaller forecasting 
variance than ordinary bagging. Lee and Clyde (2004) applied the Bayesian approach 
to online bagging, which refers to the sequential implementation of BBagging as new 
observations become available (Oza & Russell, 2001). They showed that BBagging 
can improve the predictive performance of the model for smaller datasets. Newton 
and Raftery (1994) further proposed the weighted likelihood bootstrap method as a 
generalisation of the Bayesian bootstrap and combined it with prior information to 
simulate an accurate posterior distribution. Exploring the asymptotic properties of 
Bayesian bootstrap predictions, Fushiki (2010) found that Bayesian bootstrap 
predictions are much more stable than ordinary bootstrap predictions, especially when 
the sample size is close to the model’s parameter dimension. Kurogi and Harashima 
(2009) also showed that BBagging can improve the forecasting performance of 
learning machines in the context of neural networks.  

However, no study on the effectiveness of BBagging in tourism demand forecasting 
has been conducted. Therefore, this study contributes to the tourism forecasting 
literature by introducing BBagging into tourism demand forecasting. This study 
further compares the forecasting performance of BBagging, ordinary Bagging, and 
ADL-GETS models, thus contributing to a fuller understanding of how BBagging can 
improve the accuracy of tourism forecasting.  

3. Methodology

3.1 The ADL-GETS model
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Following Song, Wong, and Chon (2003), the general (or initial) model in tourism 
forecasting is normally specified as an ADL model: 

𝑦𝑦𝑡𝑡 = 𝛼𝛼 + �𝛽𝛽𝑖𝑖𝑦𝑦𝑡𝑡−𝑖𝑖

𝑝𝑝

𝑖𝑖=1

+ ��𝛾𝛾𝑘𝑘,𝑗𝑗𝑥𝑥𝑘𝑘,𝑡𝑡−𝑗𝑗 + �𝜑𝜑𝑛𝑛𝐷𝐷𝑛𝑛 + 𝜖𝜖𝑡𝑡

𝑚𝑚

𝑛𝑛=1

𝑞𝑞

𝑗𝑗=0

𝑙𝑙

𝑘𝑘=1

(1) 

where 𝑦𝑦𝑡𝑡 represents the demand for tourism, which is normally measured by visitor 
arrivals from source market i to destination j. 𝑦𝑦𝑡𝑡−𝑖𝑖 is the value of y lagged by i-period. 
𝑥𝑥𝑘𝑘,𝑡𝑡−𝑗𝑗 represents the factors that influence tourism demand and their lagged values. 
𝐷𝐷𝑛𝑛 represents a dummy variable to capture the effect of a one-off event. 𝑝𝑝 and 𝑞𝑞 
indicate the maximum lag periods of the dependent (tourism demand) and 
independent variables (influencing factors). 𝛼𝛼, 𝛽𝛽, 𝛾𝛾, and 𝜑𝜑 are the coefficients that 
need to be estimated. Finally, 𝜖𝜖𝑡𝑡 is the error term with a zero mean and constant 
variance. Following common practice in the tourism forecasting literature (Song et al., 
2010; Song & Witt, 2000; Song, Wong & Chon, 2003), the maximum lag order in 
Equation (1) is set to 2 for models using annual data and 4 for models using quarterly 
data.   

The initial ADL model (Equation 1) often contains many explanatory variables, 
together with their lagged values. When the model is estimated, it is very likely that it 
is over-parameterised with large variances in the estimated coefficients (Song, Witt, 
& Li, 2003). Over-parameterisation and excessive variances in the model estimation 
are the sources of the model’s instability. Thus, the forecasts of the future values of 
tourism demand tend to be less accurate. In the GETS procedure, the initial ADL 
model (Equation 1) is estimated by the OLS method, and the candidate variables for 
elimination include all of the explanatory variables, their lagged values, and the 
dummy variables that account for one-off events. This study uses the Akaike 
information criterion (AIC) to eliminate variables. The elimination procedure 
continues until all non-significant variables are dropped from the model, and the AIC 
cannot be further reduced. By reducing the number of explanatory variables in this 
backward model selection algorithm (Song, Witt & Li, 2009), the instability of the 
forecasting model is reduced, and the forecasting performance of the model improves 
(Hastie et al., 2009). 

3.2 Ordinary Bagging 

In the ordinary bagging approach, bootstrap resampling is used to reduce the 
estimator’s variance by expanding the sample size. For an observation dataset 𝑀𝑀𝑖𝑖 =
(𝑌𝑌𝑖𝑖,𝑋𝑋𝑖𝑖) with a length of 𝑛𝑛, ordinary bagging is applied as follows. 

1. Dataset 𝑀𝑀𝑖𝑖 = (𝑌𝑌𝑖𝑖,𝑋𝑋𝑖𝑖) is bootstrapped B times to construct bootstrap samples

𝑀𝑀𝑏𝑏,𝑖𝑖
∗ = �𝑌𝑌𝑏𝑏,𝑖𝑖

∗ ,𝑋𝑋𝑏𝑏,𝑖𝑖
∗ �, where 𝑏𝑏 ∈ {1, … ,𝐵𝐵}.

2. The predicted value 𝑦𝑦�𝑏𝑏,𝑛𝑛+ℎ
∗ = 𝑓𝑓𝑏𝑏(𝑀𝑀𝑏𝑏,𝑛𝑛

∗ ) is calculated; in our model, function 𝑓𝑓 
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represents the ADL-GETS model. 

3. The final forecast is 𝑦𝑦�𝑛𝑛+ℎ∗ = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛�𝑦𝑦�𝑏𝑏,𝑛𝑛+ℎ
∗ � or 𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛(𝑦𝑦�𝑏𝑏,𝑛𝑛+ℎ

∗ ). 

The resampling progress can also be seen as assigning weight 𝜔𝜔𝑖𝑖 to each bootstrap 

sample, 𝜔𝜔 ∈ {0, 1
𝑛𝑛

, 2
𝑛𝑛

, … ,1}. The sum of 𝜔𝜔𝑖𝑖 is equal to 1, and 𝑛𝑛𝜔𝜔𝑖𝑖 is the frequency with 

which 𝑀𝑀𝑖𝑖 appears in the bootstrap sample. Thus, when ordinary bagging is applied to 
a small sample (𝑛𝑛), 𝜔𝜔 may become more diverse and induce greater variance in the 
prediction.  

As all of the tourism demand datasets are time series that include trends and 
seasonality, classic bagging (bootstrapping a sample with replacement) cannot retain 
all of the information from the original series. In our study, the function 
‘bld.mbb.bootstrap’ in R is used to generate bootstrap samples, as proposed by 
Bergmeir et al. (2016). In this method, the bootstrap procedure is only implemented 
on the residual term, which is regarded as the white noise generated by STL 
decomposition. Thus, the trend and seasonality of the original data are preserved. 
Outliers generated by one-off events are smoothed before the bootstrap procedure is 
implemented, which ensures that the effects of one-off events do not randomly appear 
in the bootstrap series and thus affect the bagging result. 

 

3.3 BBagging 

BBagging treats the weight 𝜔𝜔𝑖𝑖 of each bootstrap sample as unknown and follows the 
non-informative Dirichlet prior, 𝜋𝜋(𝜔𝜔) ∝ ∏ 𝜔𝜔𝑖𝑖

−1𝑛𝑛
𝑖𝑖=1  (Rubin, 1981). The posterior 

distribution 𝜋𝜋(𝜔𝜔|𝑀𝑀𝑛𝑛) follows a Dirichlet distribution when the prior is combined with 
a multinominal likelihood. The Dirichlet distribution is the conjugate prior of the 
multinomial distribution, where all of the values are between 0 and 1, and their sum is 
1. An n-dimensional Dirichlet distribution is represented by 
𝐷𝐷𝑚𝑚𝐷𝐷𝑚𝑚𝐷𝐷ℎ𝑙𝑙𝑚𝑚𝑙𝑙𝑛𝑛(𝛼𝛼1,𝛼𝛼2, … ,𝛼𝛼𝑛𝑛), where the expectation of a dimension equals 𝛼𝛼𝑖𝑖/∑𝛼𝛼1,…,𝑛𝑛. 
The distribution becomes closer to the proportion of the parameter mean as ∑𝛼𝛼1,…,𝑛𝑛 
increases (Newton & Raftery, 1994). In the non-informative prior, the weights of all 
of the data are expected to be equal, which indicates that uniform Dirichlet weights 
should be used. 

For a model that can accept weight, we can obtain a predicted value of 𝑦𝑦�𝑏𝑏𝑏𝑏,𝑡𝑡+𝐻𝐻
∗ =

𝑓𝑓(𝑀𝑀𝑛𝑛,𝜔𝜔𝑏𝑏,𝑛𝑛) for each set of 𝜔𝜔𝑏𝑏,𝑛𝑛 generated from 𝜋𝜋(𝜔𝜔|𝑀𝑀𝑛𝑛). 

The ADL model can be written as 

𝒀𝒀 = 𝑿𝑿
(1 × 𝑜𝑜)

∙ 𝜼𝜼
(𝑜𝑜 × 1)

+ 𝜺𝜺 (2) 

where 𝑿𝑿𝒊𝒊 = [1,𝑦𝑦𝑛𝑛−1, … ,𝑦𝑦𝑛𝑛−𝑝𝑝,𝑥𝑥𝑘𝑘,𝑛𝑛, … , 𝑥𝑥𝑘𝑘,𝑛𝑛−𝑞𝑞 ,𝐷𝐷1, … ,𝐷𝐷𝑚𝑚],𝜼𝜼 =
[𝛼𝛼,𝛽𝛽1, …𝛽𝛽𝑝𝑝,𝛾𝛾0, … , 𝛾𝛾𝑞𝑞 ,𝜑𝜑1, …𝜑𝜑𝑚𝑚]′. 
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Then, the OLS method is used to estimate parameter 𝜼𝜼�: 

𝜼𝜼� = arg min‖𝒀𝒀 − 𝑿𝑿𝜼𝜼‖2 = (𝑿𝑿′𝑿𝑿)−1𝑿𝑿′𝒀𝒀 (3) 

In practice, the BBagging procedure is the same as the weighted least squares 
estimation (MLS), which is as follows: 

𝜼𝜼�𝑏𝑏∗ = arg min(𝒀𝒀 − 𝑿𝑿𝜼𝜼)𝑇𝑇𝑾𝑾𝑏𝑏(𝒀𝒀 − 𝑿𝑿𝜼𝜼) = (𝑿𝑿′𝑾𝑾𝑏𝑏𝑿𝑿)−1𝑿𝑿′𝑾𝑾𝑏𝑏𝒀𝒀 (4) 

𝑾𝑾𝑏𝑏 = �
𝜔𝜔𝑏𝑏,1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜔𝜔𝑏𝑏,𝑛𝑛

� is a diagonal matrix constructed by 𝜔𝜔𝑏𝑏,𝑖𝑖. When all of the 

𝜔𝜔𝑏𝑏,𝑖𝑖 equal 1
𝑛𝑛
, the estimates are equivalent to OLS. The posterior distributions of 𝜼𝜼� and 

𝑦𝑦�𝑏𝑏𝑏𝑏,𝑡𝑡+𝐻𝐻
∗  are easily obtained by running the Monte Carlo estimation 𝐵𝐵 times. The final 

forecast is the median or mean of the predictive distribution (Clyde & Lee, 2001). 

 

3.4 Data and modelling process 

To eliminate the impact of policy interventions on visitor arrivals from the prediction, 
this study uses the annual and quarterly visitor arrivals to Hong Kong from six visa-
free origin countries (Australia, Canada, France, Germany, the UK, and the US). The 
visitor arrivals data are obtained from the Hong Kong Tourism Board’s PartnerNet 
(https://partnernet.hktb.com/en/home/index.html). To compare the performance of 
BBagging in different samples, the annual and quarterly data are treated as small and 
large samples, respectively. Based on demand theory, in addition to the income of the 
origin country, the relative price of tourism products in Hong Kong and the origin 
country (adjusted by exchange rates; Song, Witt, & Li, 2003) is included in the model 
to capture the effect of prices on tourism demand. The income of the origin country is 
measured by the real GDP of the source markets, and the relative price variable is 
calculated as follows:  

𝑅𝑅𝑅𝑅𝑒𝑒,𝑖𝑖 =
𝐶𝐶𝑅𝑅𝐶𝐶𝐻𝐻𝐻𝐻,𝑖𝑖 𝐸𝐸𝑋𝑋𝐻𝐻𝐻𝐻,𝑖𝑖⁄
𝐶𝐶𝑅𝑅𝐶𝐶𝑒𝑒,𝑖𝑖 𝐸𝐸𝑋𝑋𝑒𝑒,𝑖𝑖⁄ (5) 

where 𝐶𝐶𝑅𝑅𝐶𝐶𝐻𝐻𝐻𝐻,𝑖𝑖 and 𝐶𝐶𝑅𝑅𝐶𝐶𝑒𝑒,𝑖𝑖 are the consumer price indices (CPIs) of Hong Kong and the 
source country e, respectively. 𝐸𝐸𝑋𝑋𝐻𝐻𝐻𝐻,𝑖𝑖 and 𝐸𝐸𝑋𝑋𝑒𝑒,𝑖𝑖 represent the exchange rate of the 
Hong Kong dollar against the currency of the source country measured in US dollars. 
GDP, CPI, and exchange rate (EX) all use the 2010 values as a base. These data are 
collected from the International Financial Statistics of the International Monetary 
Fund (IMF). Seasonal dummy variables and one-off events, such as the September 11, 
2001 attacks, severe acute respiratory syndrome (SARS), and the 2008 Global 
Financial Crisis, are included in the models. Following tourism demand theory (Li et 
al., 2005), visitor arrivals, income, and relative price are log-transformed and 
represented as LAR, LY, and LRP, respectively. 
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To evaluate the performance of BBagging in samples with different lengths, annual 
and quarterly forecasts are conducted within different rolling windows. For annual 
forecasting, 1999 to 2014 is used for model estimation, and one- to four-step-ahead 
rolling forecasts are generated for the 2015–2018 period. For quarterly forecasting, 
the sample period is the same as for annual forecasting. The subsample from 1999Q1 
to 2015Q4 is used for model estimation, and the remainder of the sample is used to 
evaluate the performance of the 1-step-ahead to 12-steps-ahead forecasts. 

 

3.5 Forecasting evaluation 

The evaluation of forecasting performance is based on ex post forecasts. The 
forecasting evaluation metrics are the mean absolute percentage error (MAPE) and 
the root mean square error (RMSE), which are commonly used in the literature (Wu et 
al., 2017). MAPE and RMSE diagnose the deviation of a prediction from the absolute 
and quadratic levels, respectively. These forecasting error measures are defined as 
follows: 

𝑀𝑀𝑀𝑀𝑅𝑅𝐸𝐸 =
1
𝑛𝑛
�

|𝑚𝑚𝑖𝑖|
𝑦𝑦𝑖𝑖

𝑛𝑛

𝑖𝑖=1

(6) 

where 𝑚𝑚𝑖𝑖 = 𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖, 𝑦𝑦�𝑖𝑖 is the forecast value of 𝑦𝑦𝑖𝑖, and                     

𝑅𝑅𝑀𝑀𝑅𝑅𝐸𝐸 = �
1
𝑛𝑛
�𝑚𝑚𝑖𝑖2
𝑛𝑛

𝑖𝑖=1

(7) 

 

4. Findings and Discussion 

4.1 Unit root and cointegration tests 

Before modelling and forecasting, unit root and bounds tests are conducted. Tables 1 
and 2 present the integrated orders of all of the dependent and independent variables 
from the Augmented Dickey–Fuller (ADF) test, Phillips–Perron (PP) test, and 
Kwiatkowski–Phillips–Schmidt–Shin (KPSS) tests. Tables 1 and 2 indicate that almost 
all of the time series are either I (0) or I (1) and thus eligible for the bounds test. The 
null hypothesis (H0) of the bounds test is that there is no cointegration between the 
dependent and independent variables. If the F-statistic is greater than the given upper 
bound I (1) value, H0 is rejected. If it falls between the bounds of I (0) and I (1), t-
statistics are needed to confirm the finding. Details of the bounds test can be found in 
Pesaran et al. (2001) and Song and Lin (2010). Table 3 shows the results of the ADL 
model bounds test and the lower and upper bound values at the 1%, 5%, and 10% 
significance levels, obtained from Pesaran et al. (2001). As there are two independent 
variables, income and relative price, in the models that use annual data, the population 
parameter k equals 2.  There are five independent variables in the models based on 
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quarterly data, as three additional seasonal dummy variables are introduced to capture 
the seasonality effect; k is therefore set to 5. The F-statistics in Table 3 indicate that the 
annual models for all of the origin countries show a significant long-term relationship 
between the dependent and independent variables at the 1% significance level, except 
for the samples from Canada and the UK, which are significant at the 10% level. The 
cointegration relationships are observed in all six source markets in the quarterly 
models at the 1% significance level.  To verify the specifications of the ADL models 
used in the bounds tests, several diagnostic tests including the Durbin–Watson 
autocorrelation test (DW test), White’s heteroskedasticity test (White test), ARCH 
heteroskedasticity test (Arch test), Jarque–Bera normality test (JB test), and Ramsey 
misspecification test (RESET test) are conducted. All of the models pass the diagnostic 
tests at the 5% significance level with the exceptions of the DW and JB tests in the 
quarterly US model and the RESET test in the annual Germany and quarterly Australia 
models. Thus, overall, the estimation results of the ADL models are valid, and the 
bounds test results are reliable. Due to space constraints, the diagnostic test results are 
omitted, but are available upon request. 
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Table 1. Unit Root Test Results for Annual Data 

Australia 
 LAR ΔLAR LY ΔLY LRP ΔLRP 

ADF -1.076 -3.276*** -1.687 -2.602** -1.421 -2.974*** 
PP -7.242 -25.336*** -2.738 -18.231** -4.597 -13.342 
KPS 0.722** 0.141 0.892*** 0.300 0.548** 0.156 
Order - I (1) - I (1) - I (1) 

Canada 
 LAR ΔLAR LY ΔLY LRP ΔLRP 

ADF -1.705 -3.518*** -1.911* - -1.725 -2.372** 
PP -8.327 -27.470*** -4.663 -22.015** -2.191 -10.526 
KPS 0.771*** 0.177 0.877*** 0.269 0.430* 0.234 
Order - I (1) - I (1) - I (1) 

France 
 LAR ΔLAR LY ΔLY LRP ΔLRP 

ADF -1.253 -3.676*** -2.289** - -2.174** - 
PP -9.202 -26.275*** -3.608 -14.907 -5.623 -10.322 
KPS 0.664** 0.118 0.837*** 0.290 0.162 - 
Order - I (1) - I (1) I (0) - 

Germany 
 LAR ΔLAR LY ΔLY LRP ΔLRP 

ADF -3.068*** - 0.751 -3.950*** -2.164** - 
PP -7.874 -24.948*** -2.665 -18.051** -5.809 -10.505 
KPS 0.138 - 0.812*** 0.324 0.162 - 
Order I (0) - - I (1) I (0) - 

UK 
 LAR ΔLAR LY ΔLY LRP ΔLRP 

ADF -0.865 -3.271*** -1.443 -1.987* -1.897* - 
PP -11.833 -28.879*** -4.365 -13.612 -2.222 -14.221 
KPS 0.677** 0.065 0.816*** 0.251 0.211 - 
Order - I (1) - I (1) I (0) - 

US 
 LAR ΔLAR LY ΔLY LRP ΔLRP 

ADF -1.535 -4.630*** -1.412 -2.500** -3.226*** - 
PP -20.195** - -5.443 -12.926 -1.791 -7.591 
KPS 0.790*** 0.075 0.874*** 0.308 0.411* 0.282 
Order - I (1) - I (1) - I (1) 

Note. *, **, and *** represent the rejection of H0 at the 10%, 5%, and 1% significance levels, 
respectively.
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Table 2. Unit Root Test Results for Quarterly Data 

Australia 
 LAR ΔLAR LY ΔLY LRP ΔLRP 

ADF -2.478** - -1.031 -8.865*** -1.779* - 
PP -33.105*** - -49.505*** - -2.682 -53.142*** 
KPS 1.318*** 0.054 2.058*** 0.200 1.081*** 0.353 
Order I (0) - - I (1) - I (1) 

Canada 
 LAR ΔLAR LY ΔLY LRP ΔLRP 

ADF -3.724*** - -1.837* - -1.753* - 
PP -48.774*** - -39.383*** - -2.298 -54.035*** 
KPS 1.308*** 0.047 2.031*** 0.215 0.672** 0.638** 
Order I (0) - I (0) - - I (1) 

France 
 LAR ΔLAR LY ΔLY LRP ΔLRP 

ADF -3.195*** - -1.721* - -1.613 -5.613*** 
PP -47.690*** - -46.546*** - -2.554 -52.152*** 
KPS 1.167*** 0.049 1.889*** 0.239 0.500** 0.317 
Order I (0) - I (0) - - I (1) 

Germany 
 LAR ΔLAR LY ΔLY LRP ΔLRP 

ADF -4.472*** - -0.918 -14.098*** -1.658 -5.601*** 
PP -61.035*** - -13.199 -54.233*** -2.717 -52.738*** 
KPS 0.804*** 0.042 1.766*** 0.148 0.504** 0.295 
Order I (0) - - I (1) - I (1) 

UK 
 LAR ΔLAR LY ΔLY LRP ΔLRP 

ADF -4.358*** - -1.939* - -1.492 -7.057*** 
PP -51.135*** - -5.861 -84.102*** -3.960 -45.770*** 
KPS 1.258*** 0.043 1.681*** 0.244 0.553** 0.341 
Order I (0) - - I (1) - I (1) 

US 
 LAR ΔLAR LY ΔLY LRP ΔLRP 

ADF -4.125*** - -0.844 -4.152*** -3.007*** - 
PP -68.360*** - -7.212 -54.988*** -4.178 -69.954*** 
KPS 0.961*** 0.030 2.005*** 0.147 0.497** 1.332*** 
Order I (0) - - I (1) - - 

Note. *, **, and *** represent the rejection of H0 at the 10%, 5%, and 1% significance levels, 
respectively. 
 

Table 3. Bounds Test Results of Annual and Quarterly Models 

 Annual Models Quarterly Models 

Country F-Statistic t-Statistic F-Statistic t-Statistic 

Australia 16.56*** -6.19*** 5.13*** -3.96* 
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Canada 4.76* -3.67** 19.99*** -5.44*** 

France 13.06*** -6.18*** 8.18*** -5.66*** 

Germany 11.15*** -5.31*** 7.29*** -4.81*** 

UK 4.76* -3.39* 16.67*** -5.92*** 

US 7.15*** -4.62*** 11.74*** -6.87*** 

Critical Value of Bounds Test I (0) I (1) I (0) I (1) I (0) I (1) I (0) I (1) 

10% Significance Level 3.17 4.14 -2.57 -3.21 2.26 3.35 -2.57 -3.86 

5% Significance Level 3.79 4.85 -2.86 -3.53 2.62 3.79 -2.86 -4.19 

1% Significance Level 5.15 6.36 -3.43 -4.10 3.41 4.68 -3.43 -4.79 
Note. *, **, and *** represent the rejection of H0 at the 10%, 5%, and 1% significance levels, 
respectively. 
 

4.2 Estimation results 

Tourism demand elasticity is a measure of how tourism demand responds to changes in 
the independent variables. Based on demand theory, income elasticity is expected to be 
positive, whilst price elasticity is expected to be negative. Table 4 shows the long-term 
income and price elasticities in the annual and quarterly models for all of the source 
countries. Some of the elasticities are not available in the annual models because the 
non-significant variables (LY or LRP) are removed by the GETS procedure. The correct 
signs of income and price elasticities indicate that the ADL-GETS models are able to 
capture the long-term relationships between variables at different data frequencies.  

 

Table 4. Tourism Demand Elasticities in Annual and Quarterly Models 

  Annual Quarter 

Country 
Income 

Elasticity  
Price 

Elasticity 
Income 

Elasticity  
Price 

Elasticity 
Australia 1.62 - 0.04 -0.82 
Canada - -0.85 0.53 -0.60 
France 1.30 - 1.54 -0.69 

Germany - -0.48 0.39 -0.41 
UK 1.00 -0.56 1.73 -0.25 
US 0.42 -0.82 0.42 -0.64 

 

4.3 Annual forecasts 

The annual forecasts of the visitor arrivals from the six long-haul source markets to 
Hong Kong are implemented using ADL-GETS, GETS Bagging, and GETS 
BBagging. The forecasting performance of the three methods, measured by MAPE 
and RMSE, are presented in Table 5. The grid search suggests that a Dirichlet 
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distribution in which 𝛼𝛼𝑖𝑖 equals 7 produces the most accurate forecasts based on both 
MAPE and RMSE when the hyperparametric is set to search between 1 and 10. The 
models use different procedures to predict the tourism demand of the six markets for 
the 1-year-ahead to 4-years-ahead forecast horizons. In general, the forecasting 
accuracy of all of the models decreases as the forecast horizon extends, due to 
increasing uncertainty. For example, the MAPE values of the GETS model for 
Germany increase from 0.89% to 12.15% when the forecast horizon extends from 1-
year ahead to 4-years ahead. This finding is consistent with the tourism forecasting 
literature (Song et al., 2010; Song, Wong & Chon, 2003). For individual source 
markets, the three methods produce different results. For example, in the cases of 
Australia, Canada, and the UK, the Bagging models outperform the simple GETS 
model across all horizons according to both error measures. In the cases of France and 
Germany, ordinary bagging fails to improve GETS forecasting accuracy, but 
BBagging shows significant improvements except in the 1-year-ahead forecasts. For 
the U.S. case, when the performance is measured by MAPE, ordinary bagging beats 
GETS in all horizons, with the exception of the 1-year-ahead forecast, but BBagging 
does not improve the performance of GETS in any of the four horizons. However, 
when RMSE is adopted, there is no clear winner among the three competing models.   

To verify whether the Bagging methods can improve the GETS model’s performance, 
the two evaluation measures are calculated by the median of the bagging prediction 
distribution (see Figure 1 and Table 5). The results suggest that, overall, both bagging 
methods improve the forecasting accuracy of the single GETS model. When the 
forecasts are evaluated by relative measurements (i.e., MAPE), the performance of 
ordinary bagging and BBagging is similar. Across all six markets and four forecast 
horizons (24 cases), both bagging methods reduce the forecast errors of the GETS 
model in 16 out of 24 cases according to the MAPE values. According to the one-
sample Wilcoxon test, the Wilcoxon statistic for both ordinary bagging and BBagging 
is 136 and significant at the 0.1% significance level, which suggests that the 
improvement is statistically significant. When forecasting accuracy is measured by 
the absolute error (i.e., RMSE), ordinary bagging can improve GETS’ forecasting 
performance in 15 out of 24 cases, whilst BBagging can improve GETS’ forecasting 
performance in 20 out of 24 cases, with Wilcoxon statistics of 120 (p = 0.000) and 
210 (p = 0.000), respectively. Thus, overall, both ordinary Bagging and BBagging can 
improve the forecasting accuracy of GETS in annual forecasting.  
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Note. OB = ordinary bagging; BB = BBagging. 
Figure 1. Performance of the Three Methods in Annual Forecasting 
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Table 5.  Annual Forecasting Performance of the GETS, Ordinary Bagging, and BBagging Models 

 Country  
Horizon 

MAPE RMSE 
GETS GETS.OB GETS.BB GETS GETS.OB GETS.BB 

Australia        
 1 0.75 1.16 0.03                 4.35                  6.74                  0.17  
 2 10.59 6.63 5.39             104.58                40.83                32.79  
 3 18.23 15.04 20.08             186.01              101.41              143.88  
 4 21.51 20.48 21.68             208.57              148.01              159.06  

Canada        
 1 20.44 10.73 19.93               60.83                34.75                59.56  
 2 22.48 12.74 21.92               67.05                41.48                65.65  
 3 22.34 12.97 21.21               67.00                42.37                64.27  
 4 22.93 14.29 21.94               69.05                46.67                66.76  

France        
 1 4.36 6.08 4.83                 8.77                13.58                10.65  
 2 6.62 4.83 0.90               13.78                10.92                  1.92  
 3 5.35 3.90 1.58               11.71                  9.34                  3.91  
 4 4.56 4.62 2.16               10.39                11.07                  5.42  

Germany        
 1 0.89 2.09 1.25                 1.92                  4.37                  2.70  
 2 6.45 9.86 3.73               17.24                20.77                10.18  
 3 9.92 13.50 7.76               23.44                27.00                16.97  
 4 12.15 15.54 10.50               27.13                30.49                21.89  

UK        
 1 5.69 4.57 5.34               28.50                23.15                26.82  

 2 11.04 9.04 8.92               58.56                46.22                45.66  
 3 18.44 11.69 12.55               93.17                58.24                61.90  
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 4 23.38 13.20 17.27             113.04                66.21                82.79  
US        

 1 2.94 5.17 3.39               33.77                58.06                38.69  
 2 6.60 6.13 7.33               83.18                70.81                83.10  
 3 7.36 6.36 7.68               88.79                73.57                87.21  
 4 8.58 8.48 9.31             104.77              106.39              114.25  

Note. 1. The magnitude of MAPE is measured as a percentage, and the magnitude of all RMSE values is given at 106. 2. OB = ordinary bagging; 
BB = BBagging. 3. The numbers in italics indicate the best performing model in each horizon, as assessed by MAPE and RMSE.
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A close examination of Figure 1 shows that ordinary bagging outperforms BBagging 
in 12 out of 24 cases across the two error measures. However, the one-sample 
Wilcoxon test shows no significant difference between the two methods (W = 137.5, 
p = 0.671), indicating that although BBagging can statistically beat GETS in annual 
forecasting, it does not statistically outperform ordinary bagging in its predictions of 
changes in Hong Kong’s six long-haul markets. 

Forecasting accuracy is a key indicator to assess forecasting performance, but the 
variation in the forecasts should not be ignored, particularly when the performance of 
GETS is not stable (Bühlmann & Yu, 2002). A split violin chart is used to further 
compare the variability in the prediction distribution of the two bagging methods (see 
Figure 2). The split violin chart maps the nuclear density of the 100 forecasts 
generated by the ordinary bagging and BBagging procedures for all six source 
markets. The lower and upper dotted lines represent the 25% and 75% quantiles, 
respectively. The white dot on the central axis represents the median of each 
forecasting distribution. The shape of the violin chart and the box widths show that 
BBagging generates a more centralised prediction distribution than ordinary bagging.  

 

Note. The red chart is the ordinary bagging distribution and the blue chart is the 
BBagging distribution. 
Figure 2. Distributions of Annual Forecasts Using Ordinary Bagging and 
BBagging 
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Table 6 presents the coefficients of variation of the forecast errors in the four forecast 
horizons across the six source markets generated by the two bagging methods. 
Consistent with the graphs in Figure 1, the Wilcoxon test suggests that the variation in 
the BBagging forecasts is significantly smaller than the variation in the ordinary 
bagging forecasts (W = 456, p = 0.000), indicating that BBagging generates more 
concentrated forecasts than ordinary bagging.  

Table 6. Coefficients of Variation of Annual Forecast Errors  
Horizon Australia Canada France 
 OB BB OB BB OB BB 

1 0.049  0.022  0.175  0.025  0.066  0.051  
2 0.088  0.050  0.168  0.037  0.057  0.070  
3 0.092  0.056  0.196  0.050  0.044  0.044  
4 0.095  0.052  0.234  0.061  0.040  0.035  

Horizon Germany UK US 
 OB BB OB BB OB BB 

1 0.057  0.015  0.051  0.016  0.029  0.015  
2 0.060  0.036  0.073  0.042  0.034  0.013  
3 0.066  0.040  0.111  0.080  0.035  0.014  
4 0.075  0.040  0.117  0.080  0.043  0.020  

Abbreviation: BB, BBagging; OB, ordinary bagging. 

 

Overall both bagging methods can statistically beat GETS and have similar 
forecasting performance in the annual forecasts. Although BBagging does not 
demonstrate a more accurate performance than ordinary bagging, as suggested by 
Kurogi and Harashima (2009), it reveals a more stable result with stronger validity, 
which is consistent with Fushiki (2010). Thus, BBagging can not only beat the simple 
GETS model but is also preferable to ordinary bagging due to its higher validity when 
using small samples for forecasting. 

 

4.4 Quarterly forecasts 

The grid search from 1 to 10 suggests that the quarterly forecasts are most accurate 
when the hyperparameter in the Dirichlet distribution equals 3. The summary of the 
forecasting performance is presented in Figure 3 and Table 7. Six selected quarterly 
forecast horizons are presented in Table 7, covering short-run forecasts (i.e., one-
quarter to three-quarters ahead) and medium-run forecasts (i.e., 6- to 12-quarters 
ahead). Consistent with the results for the annual forecasts, in general, as the forecast 
horizon extends, the forecast errors become larger. However, in the quarterly 
forecasts, the two bagging methods only beat GETS in the case of France, in four out 
of six horizons. In the other five source markets, the bagging methods fail to 
outperform GETS. 
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In the 36 (6 horizons × 6 source markets) quarterly forecasts, ordinary bagging 
outperforms GETS 12 times when the performance is measured by MAPE and 
RMSE, whilst BBagging beats GETS 10 times across the two error measures. The 
one-sample Wilcoxon test suggests that neither ordinary bagging nor BBagging 
significantly improves the performance of GETS for the quarterly forecasts. It is not 
surprising that the performance of GETS tends to improve and become more stable as 
the sample size increases from 16 periods in the annual forecasts to 68 periods in the 
quarterly forecasts (Liu et al., 2020). Thus, the superiority of BBagging in handling 
high forecast variability in small samples is not fully reflected in the quarterly 
forecasts. Ordinary bagging in quarterly forecasting cannot beat GETS, which 
contradicts the findings of Athanasopoulos et al. (2018), perhaps because the sample 
size in this study is much smaller than theirs. Although GETS becomes more stable in 
larger samples (Liu et al., 2020), ordinary bagging can be much more accurate and 
beats GETS when the model is fitted with large samples. The advantages of GETS 
over ordinary bagging should be examined in future studies. 

 

Note. OB = ordinary bagging; BB = BBagging. 
Figure 3. Performance of the Three Methods in Quarterly Forecasting
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Table 7. Quarterly Forecasting Performance of GETS, Ordinary Bagging, and BBagging 

 Country Horizon  MAPE  RMSE    
GETS OB BB GETS OB BB 

Australia        
 1 1.03 0.77 2.20 1.37 1.04 2.89 
 2 6.30 7.33 8.00 11.39 11.19 14.83 
 3 8.21 7.25 6.40 13.86 10.79 11.53 
 6 6.50 8.30 8.48 11.91 12.36 12.45 
 9 7.93 8.46 8.44 14.20 12.79 12.57 
 12 9.03 8.19 8.12 16.32 13.46 13.13 

Canada        
 1 10.17 9.71 9.32 8.86 8.50 8.18 
 2 10.75 8.00 10.93 8.82 8.28 10.19 
 3 8.33 9.77 12.17 7.36 9.07 11.73 
 6 10.48 11.25 15.19 9.66 12.68 15.27 
 9 10.66 13.66 16.60 10.27 14.34 16.63 
 12 9.72 13.64 16.64 9.65 14.34 16.78 

France        
 1 13.76 7.49 13.91 5.80 3.34 5.86 
 2 11.47 6.19 8.88 5.21 3.47 5.16 
 3 10.78 6.44 4.85 5.15 3.63 2.82 
 6 10.22 8.72 7.71 5.25 5.43 5.87 
 9 8.06 9.75 8.44 4.56 5.76 5.58 
 12 7.41 10.06 8.94 4.57 6.24 5.34 

Germany        
 1 10.40 14.98 10.93 5.50 7.61 5.76 
 2 7.54 8.35 5.15 4.30 5.10 3.40 
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 3 5.76 9.85 7.94 3.56 5.51 4.88 
 6 7.06 14.62 11.11 4.28 9.01 7.61 
 9 6.52 16.16 12.72 4.08 9.54 8.10 
 12 6.42 16.45 13.36 4.04 10.07 8.79 

UK        
 1 5.14 2.85 2.87 7.08 4.01 4.03 
 2 5.37 4.98 4.82 7.02 9.14 6.83 
 3 4.47 9.37 6.90 6.00 13.80 10.59 
 6 7.62 9.93 8.04 10.95 15.05 12.88 
 9 7.47 11.28 9.96 10.77 17.09 15.48 
 12 7.19 12.09 10.16 10.30 18.01 15.76 

US        
 1 5.43 4.09 4.08 14.38 10.97 10.94 
 2 5.71 5.82 5.80 16.09 20.68 20.28 
 3 4.23 5.82 6.36 13.28 21.92 24.13 
 6 6.99 9.02 9.08 23.00 32.92 33.16 
 9 6.70 9.38 10.42 22.67 32.82 36.75 
 12 7.33 10.40 11.04 26.09 38.06 40.50 

Note. 1. The magnitude of MAPE is given as a percentage. The magnitude of all RMSE values is 106. 2. OB = ordinary bagging; BB = 
BBagging. 3. The numbers in italics indicate the best performing model in each horizon, assessed by MAPE and RMSE.
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Although neither of the two bagging methods are able to beat GETS in quarterly forecasting, 
BBagging is more accurate than ordinary bagging in 21 out of 36 cases when measured by 
MAPE. The performance of BBagging and ordinary bagging is close when measured by RMSE, 
as the former only beats the latter in 17 out of 36 cases. The one-sample Wilcoxon test indicates 
that the improvement is not significant at the 5% significance level according to either error 
measure. The comparison of the two methods in quarterly forecasting suggests that ordinary 
bagging and BBagging have similar forecasting performance, which is consistent with the 
finding of the annual forecasts. 

Figure 4 and Table 8 present the variations in the quarterly forecasts generated by ordinary 
bagging and BBagging. The violin plots in Figure 4 suggest that the prediction distribution 
generated by ordinary bagging has greater volatility than that of BBagging, as the range of most 
of the ordinary bagging results is larger than those of BBagging. The Wilcoxon test of the 
coefficient of variation of the forecast errors (see Table 8) reveals that the variation in the 
BBagging results is significantly smaller than the variation in the ordinary bagging results (W = 
781, p = 0.068), which is consistent with the observation in the violin plots. The Wilcoxon test 
confirms that the difference is significant, especially in the variations in the short-run (one-step 
to three-steps ahead) forecasts (W = 258, p = 0.001). Consistent with the annual forecasts, the 
BBagging results are more concentrated than those of the ordinary bagging method in the 
quarterly forecasts, which means that the performance of BBagging has stronger validity. 
Overall, although the two bagging methods cannot improve the performance of GETS in 
quarterly forecasting, their performance for quarterly forecasting is consistent with their 
performance for annual forecasts. Specifically, although BBagging is not superior to ordinary 
bagging in terms of forecasting accuracy, its validity is much stronger. 
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Note. The red is the distribution of ordinary bagging and the blue is the distribution of BBagging 
forecasts.  

 

Figure 4. Distributions of Quarterly Forecasts Using Ordinary Bagging and BBagging 

 

Table 8 Coefficients of Variation – Quarterly Forecast Errors  
Horizon Australia Canada France 
 OB BB OB BB OB BB 

1 0.038  0.021  0.039  0.015  0.040  0.026  
2 0.049  0.034  0.040  0.025  0.041  0.029  
3 0.054  0.039  0.035  0.025  0.030  0.027  
6 0.076  0.063  0.048  0.039  0.044  0.040  
9 0.093  0.072  0.068  0.057  0.044  0.039  

12 0.110  0.081  0.059  0.053  0.043  0.041  
Horizon Germany UK US 
 OB BB OB BB OB BB 

1 0.032  0.027  0.033  0.023  0.028  0.016  
2 0.035  0.029  0.030  0.040  0.028  0.015  
3 0.032  0.031  0.041  0.046  0.024  0.016  
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6 0.040  0.042  0.026  0.043  0.040  0.026  
9 0.043  0.051  0.035  0.060  0.040  0.028  

12 0.036  0.052  0.030  0.058  0.039  0.029  
Abbreviation: BB, BBagging; OB, ordinary bagging. 

 
5. Conclusion 

This study presents the first attempt to introduce BBagging to tourism demand forecasting and 
investigates whether BBagging can improve the GETS model’s annual and quarterly forecasts. 
Tourism demand for Hong Kong from six long-haul source markets (Australia, Canada, France, 
Germany, the UK, and the US) is used to compare the forecasts. Three forecasting methods are 
used to generate annual and quarterly forecasts: GETS, GETS combined with ordinary bagging, 
and GETS combined with BBagging. Their forecasting accuracy and variation are compared 
across the three methods for both annual and quarterly forecasts, which represent small and large 
samples, respectively. 

This study reaches the following conclusions. First, both BBagging and ordinary bagging can 
improve the performance of the GETS model for small samples. However, their superiority is not 
evident in large samples. As the sample size increases, the superiority of the bagging methods, 
particularly BBagging, over the GETS procedure is not fully reflected. Second, although 
ordinary bagging and BBagging produce similar forecasting accuracy for small and large 
samples, BBagging has stronger validity than ordinary bagging. Given the same forecasting 
accuracy, the method that can generate concentrated and consistent forecasts will be preferred by 
decision makers. The BBagging method offers a robust option for forecasters seeking to predict 
tourism demand using fluctuating historical data. Decision makers can also use BBagging 
forecasts to inform their future planning and actions, as BBagging forecasts are more reliable 
than those generated by conventional one-off forecasting methods. As most tourism investments, 
such as airports and hotels, have a long construction period or high sunk costs, more reliable 
forecasts can help investors reduce the risk of forecasting failures and save financial resources. 
Due to the significant negative impacts of the social unrest in Hong Kong in 2019 and the 
outbreak of the COVID-19 pandemic in 2020 on its tourism industry, the empirical analyses in 
this study only use data from up to the end of 2018, which is a limitation of this study. However, 
given BBagging’s capacity to handle strong variations in forecasts, future research could 
combine BBagging with GETS to forecast the recovery in tourism demand after COVID-19. To 
further improve its forecasting performance, subsequent research could focus on adding more 
information to the prior distributions of BBagging to better reflect the influence of historical 
data. Different averaging methods could also be introduced into the BBagging algorithm. 
Researchers could consider assigning different weights to the predictions or clustering the 
predictions to achieve better performance. 
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