Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/89657
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Civil and Environmental Engineering-
dc.creatorNorouzi, Men_US
dc.creatorSajjadi Alehashem, SMen_US
dc.creatorVatandoost, Hen_US
dc.creatorNi, YQen_US
dc.creatorShahmardan, MMen_US
dc.date.accessioned2021-04-28T02:24:16Z-
dc.date.available2021-04-28T02:24:16Z-
dc.identifier.issn1045-389Xen_US
dc.identifier.urihttp://hdl.handle.net/10397/89657-
dc.language.isoenen_US
dc.publisherSAGE Publicationsen_US
dc.rights© The Author(s) 2015en_US
dc.rightsThis is the accepted version of the publication Norouzi M, Sajjadi Alehashem SM, Vatandoost H, Ni YQ, Shahmardan MM, A new approach for modeling of magnetorheological elastomers, Journal of Intelligent Material Systems and Structures (Vol.27 and Issue No. 8) pp. 1121-1135. Copyright © 2015 (The Author(s)). DOI: 10.1177/1045389X15615966en_US
dc.subjectMagnetorheological elastomer|Modelingen_US
dc.subjectViscoelasticen_US
dc.subjectKelvin–Voigt modelen_US
dc.titleA new approach for modeling of magnetorheological elastomersen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage1121en_US
dc.identifier.epage1135en_US
dc.identifier.volume27en_US
dc.identifier.issue8en_US
dc.identifier.doi10.1177/1045389X15615966en_US
dcterms.abstractThis article presents a novel model to portray the behavior of magnetorheological elastomer in oscillatory shear test. The dynamic behavior of an isotropic magnetorheological elastomer is experimentally investigated at different input conditions. A modified Kelvin–Voigt viscoelastic model is developed to describe relationships between shear stress and shear strain of magnetorheological elastomers based on input frequency, shear strain, and magnetic flux density. Unlike the previous models of magnetorheological elastomers, the coefficients of this model, calculated by nonlinear regression method, are constant at various harmonic shear loads and different magnetic flux densities. The results show that the new phenomenological model can effectively predict the viscoelastic behavior of magnetorheological elastomers. Also, the results demonstrate that the trend of shear storage modulus of magnetorheological elastomer based on the frequency is nonlinear from 0.1 to 8 Hz, which is predicted by the present model. The proposed model is beneficial to simulate vibration control strategies in magnetorheological elastomer base devices under harmonic shear loadings.-
dcterms.accessRightsopen access-
dcterms.bibliographicCitationJournal of intelligent material systems and structures, May 2016, v. 27, no. 8, p. 1121-1135en_US
dcterms.isPartOfJournal of intelligent material systems and structuresen_US
dcterms.issued2016-05-
dc.identifier.isiWOS:000374678900010-
dc.identifier.scopus2-s2.0-84964950044-
dc.identifier.eissn1530-8138en_US
dc.description.validate202104 bcvc-
dc.description.oaAccepted Manuscript-
dc.identifier.FolderNumbera0744-n21-
dc.identifier.SubFormID1388-
dc.description.fundingSourceSelf-funded-
dc.description.pubStatusPublished-
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
a0744-n21_1388.pdfPre-Published version2.59 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

41
Last Week
1
Last month
Citations as of Apr 14, 2024

Downloads

23
Citations as of Apr 14, 2024

SCOPUSTM   
Citations

91
Citations as of Apr 19, 2024

WEB OF SCIENCETM
Citations

84
Citations as of Apr 18, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.