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Abstract  
This paper presents a novel model to portray the behavior of magneto-rheological elastomer (MRE) in 
oscillatory shear test. Dynamic behavior of an isotropic MRE is experimentally investigated at different 
input conditions. A modified Kelvin-Voigt viscoelastic model is developed to describe relationships 
between shear stress and shear strain of MREs based on input frequency, shear strain and magnetic flux 
density. Unlike the previous models of MREs, the coefficients of this model, calculated by nonlinear 
regression method, are constant at various harmonic shear loads and different magnetic flux densities. 
The results show that the new phenomenological model can effectively predict the viscoelastic behavior 
of MREs. Also, the results demonstrate that the trend of shear storage modulus of MRE based on the 
frequency is nonlinear from 0.1 Hz to 8 Hz, which is predicted by the present model. The proposed model 
is beneficial to simulate vibration control strategies in MRE base devices under harmonic shear loadings. 
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Introduction 

Magneto-rheological (MR) materials, such as MR fluid, MR foam and MR elastomer are 

a kind of smart material its rheological properties are proportional to the external 

magnetic field. MR materials are fabricated by embedding micron-sized magnetizable 

particles in a non-magnetic matrix such as fluid, gel or rubber like materials. MR 

elastomers are solid analogues of MR fluid that the magnetizable particles can be 

distributed homogeneously (Isotropic MRE) or to be formed such a chain-like columnar 

structures (Anisotropic MRE) in a matrix. Their rheological properties can be controlled 

by an applied external magnetic field. The fabrication of these two kinds of MREs is 

depended on whether the external magnetic field is applied or not during MRE curing 

process (Carlson and Jolly, 2000; Chen et al., 2007; Li et al., 2013b; Ying et al., 2013; Li 

et al., 2014). The mechanical properties and MR effect of both isotropic and anisotropic 

MREs with and without external magnetic field is studied and a reversible change in 

modulus with external magnetic field is observed. It was found that the stiffness and 

damping properties of anisotropic MREs depend on the mutual directions of load, 

magnetic field and the particles alignment in the composite (Kallio, 2005). 

     MRE magnetic field dependent modulus merits it to being flexible and controllable so 

that sustain large deformation in tension, compression and shear mode. Unlike to MR 

fluid, sedimentation of magnetizable particles, liquid leakage and environmental 

contamination not happen in MRE due to solid like matrix. Additionally, there is no need 
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a container to hold MR materials in place. The response time of MREs, which is about 

few milliseconds, is less than MR fluids due to particles lock in place in solid like matrix, 

so no need time for particles to be rearranged in presence of magnetic field. MR fluids 

have field dependent yield stress and variable damping and typically operate in a post-

yield continuous shear flow regime while MREs normally operate in the pre-yield regime 

(Chen et al., 2008; Gong et al., 2005; Li and Zhang, 2008; Zhang et al., 2008). This makes 

the two branches of materials complementary rather than competitive to each other. At 

this case, MR fluid-elastomers (MRFEs) are used in a variety of devices such as helicopter 

lag dampers, MRFE mounts and MRFE isolators. Despite of all mentioned facts, MR 

fluids have a widespread use in mitigating vibration and controlling devices and have 

more effective output force than MREs (HU and WERELEY, 2005; Kallio, 2005; Ngatu 

et al., 2010; 2012; York et al., 2007). MR fluids have been used in damping devices (Yang 

et al., 2002), particularly dampers in bridges (Gordaninejad et al., 1998) and suspension 

systems (Raja et al., 2010), rotary actuators (Guo and Liao, 2012), clutches (Kavlicoglu 

et al., 2002), MR seat suspension system (Bai and Wereley, 2014) and brakes (Wang et 

al., 2005). On the other hand, MREs are used in adaptive tuned vibration absorber (Deng 

et al., 2006; Sun et al., 2014; Zhang, 2009), adaptive isolators (Li et al., 2013c), variable 

stiffness and damping isolators (Behrooz et al., 2014b), vehicle seat suspension (Du et 

al., 2011), micro cantilevers (Dongkyu et al., 2014), force sensor (Li et al., 2009), 

actuators (Zhou and Wang, 2005), noise barrier systems (Farshad and Le Roux, 2004), 

sandwich beams (Hu et al., 2011) and negative changing stiffness isolators (Yang et al., 
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2014). An adaptive tuned vibration absorber that can shift its natural frequency from 75 

Hz to 150 Hz is developed (Zhang, 2009). The MRE devices can forcibly put an end to 

seismic hazards and keep away from the system resonance response if the appropriate 

control strategy is considered. These applications can be controlled by active, passive or 

semi-active strategy. Most of researchers focus on semi-active strategy because of its less 

power consumption relative to active devices and its flexible controllability over passive 

systems (Behrooz et al., 2014a; Du et al., 2011). 

     Modeling and understanding dynamic behavior of MREs under various loading 

conditions is essential to design appropriate MRE-based devices for vibration control. Up 

to now, MRE modeling is considered in two different viewpoints; micro model aspect 

and macro model aspect. The micro model aspect has two branches. The first branch of 

micro model aspect is based on continuum mechanics. At these models, the finite strain 

theory is used in order to study of coupled mechanical and magnetic behavior of MREs. 

These models consider the impact of shape, orientation, distributions, chain-like 

structures and size of magnetically susceptible particles on stress components (Danas et 

al., 2012; Galipeau and Ponte Castañeda, 2013).The second branch of micro model aspect 

is micro mechanical-based; typically focus on studying and modeling field dependency 

of modulus, MR effect and stress specifically in shear mode. This branch is based on 

interaction of dipole magnetic particles of particles chain .Researchers have been used a 

wide variety of simplified assumptions about the local strain and magnetization field 

(Davis, 1999; Shen et al., 2004). 
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     The macro model aspect is based on the relation of force-displacement or stress-strain 

of MREs in different modes, particularly shear mode and compression mode, including 

viscoelastic and mathematical approach. These models are more practical than the micro 

model aspect because of capability to capture the MRE-based devices behavior and 

simply be prepared for simulation and vibration control design. The rheological properties 

of MRE in addition to the magnetic field, is depended on magnitude and frequency of 

strain, which is shown in our research experimentally. At this case, other experiments 

indicated this dependency (Blom and Kari, 2005; Stepanov et al., 2007; Wu et al., 2010; 

Zhou, 2003). 

     The beneficial and executable control simulation for MRE-based devices should be 

regardless of the loading condition. Consequently, the comprehensive model should 

consider all loading conditions such as input frequency, strain and magnetic field intensity 

in order to cover all dynamic performance of MRE. Up to now, different models are 

proposed to simulate MRE behavior. A four-parameter linear viscoelastic model that its 

coefficients in addition to the magnetic field are slightly strain dependent is presented by 

Li et al. (2010). Zhu et al. (2012) proposed a four-parameter viscoelastic fractional 

derivative model. The proposed model parameters are frequency independent, working at 

different frequency from 1 Hz to 10 Hz, while they are strain-dependent. The nonlinear 

spring element represents the magnetic-field dependency. Eem et al. (2012) developed a 

dynamic model combining the Ramberg-Osgood model and Maxwell model with four 

magnetic-field dependent parameters and one constant coefficient. However, its 
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parameters are independent of strain and input frequency while Ramberg-Osgood model 

gives the strain in terms of stress and that an explicit equation cannot be derived for the 

stress in terms of strain. A nonlinear constitutive model depending on applied magnetic 

field and strain and frequency is proposed by Blom and Kari (2011). The viscoelastic and 

frictional part of this model needs a time-consuming task to be calculated. This model is 

suitable for modeling of MRE-device applications that working in high frequency ranges 

such as engine mounts and bushings.  

     Furthermore, MREs and MRE isolators exhibit typical hysteresis behavior, 

specifically in large amplitude excitation. This nonlinear hysteresis behavior typically is 

represented by Bouc-Wen model (Wen, 1976) that is very well accepted. However, one 

of the main problems of Bouc-Wen hysteresis model is estimating of its seven model 

parameters and specifically including evolutionary variable that caused the parameter 

identification requiring great computational resources. Moreover, the parameters of 

Bouc-Wen model at most of the former studies are frequency dependent and strain 

dependent. The contribution of frequency in non-linearity of the hysteresis loop of force-

displacement may not be as important as strain or applied magnetic field, but in order to 

reach a comprehensive and accurate model it should be considered. Yu et al. (2014a) used 

a hyperbolic element instead of Bouc-Wen model to model the hysteresis behavior of 

MRE isolator. The parameters of this model is frequency dependent. Behrooz et al. 

(2014a) employed a model consisting Bouc-Wen element in order to characterize the 

force-displacement relationship of MRE isolator that its parameters are frequency and 
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strain dependence. Yang et al. (2013) proposed a model for MRE isolator based on Bouc-

Wen model that can effectively predict nonlinearity due to ascending strain. In this model, 

the influence of each magnetic-field dependent parameter on the shape of the hysteresis 

loop completely studied. However, these parameters are strain and frequency dependent 

that means it is essential to implement an optimization process at different loading 

condition each time. Li and Li (2013) exerted another phenomenological model with 

strain dependent and frequency dependent parameters based on Koh-Kelly model. Yu et 

al. (2014b) proposed a strain-stiffening model for MRE isolator by using non-linear strain 

stiffening spring (power low function). Getting the proposed model parameters are not 

easy to be searched by attempts due to differential equations and need to implement 

minimization optimization. 

     In this paper, the complexity and shortcoming in common models are resolved. At first 

step, the viscoelastic properties of MREs in shear mode are experimentally investigated. 

Dynamic hysteresis loops as well as the dependence of dynamic shear storage modulus (

) and loss factor ( ) of MRE upon the loading frequency, strain and magnetic flux 

density are experimentally obtained. The second part focused on developing a dynamic 

model for MRE that can accurately predict its behavior regarding the effect of magnetic 

field, strain and frequency, concurrently. Therefore, by implementing this heuristic 

model, there is no need to solve any differential equation or run optimization process 

every time to updated model’s parameters with respect to different loading conditions. 

Additionally, the proposed model could precisely estimate the behavior of shear storage 

G ¢ z
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modulus ( ) based on the frequency in a wide range from 0.1 Hz to 8 Hz, which is 

nonlinear while the previous works of MREs only predicted the linear behavior of shear 

storage modulus ( ) based on the frequency especially from 1 Hz to 10 Hz.  

 

Experimental setup 

The tested MRE is an isotropic MRE, which contains carbonyl iron particles (type C3518, 

Sigma-Aldrich), silicone rubber (Silicone sealant, Selleys) and silicone oil (type 378364, 

Sigma-Aldrich). The weight fraction of carbonyl iron particle, silicone rubber, and 

silicone oil are 70%, 20% and 10%, respectively. The diameter range of iron particles is 

from 3 μm to 5 μm, which are dispersed in the silicon matrix randomly. Each MRE 

specimen has a dimension of 50×12×9.5 mm. As shown in Figure 1. A specific fixture is 

designed for the experiment. The fixture consists of two steel plates that are made of steel 

and fixed together in a specific distance by using four stainless steel screws and bushings. 

The distance between the two plates is set according to the total thickness of the MRE 

specimens and the sandwiched plate between them. The permanent magnets are installed 

on the fixture to induce magnetic field perpendicular to the plane of shear force direction. 

Changing the numbers of the installed permanent magnets enables to vary the magnetic 

field that passes uniformly through the MRE specimens. 

     The experiment is conducted with a servo-hydraulic material testing machine as shown 

in Figure 2 that operates in displacement-control mode under harmonic excitations with 

G ¢

G ¢
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different combinations of strains and frequencies. Different magnetic flux densities are 

provided by permanent magnets. The loading frequencies are f=0.1, 0.3, 0.5, 1, 3, 5, 8 Hz 

and the displacement amplitudes are A=0.19, 0.38, 0.76, 1.52 mm that correspond to shear 

strain amplitudes for the specimens with 9.5 mm thickness being =2%, 4%, 8%, 16%, 

respectively. The magnitude of the flux density is varied from B=0 mT (no magnet 

installed) to B=100, 180, 230 and 272 mT for investigating the effect of magnetic field 

on dynamic behavior of the MRE. 

Experimental results and discussion 

Hysteresis loops 

Hysteresis loops of tested MRE under different strains and frequencies are shown in 

Figures 3 and 4 when magnetic flux density is B=0 mT (without magnet) and B=272 mT 

(with 4 magnets), respectively. These Figures illustrate the effect of strain on the shape 

of hysteresis loop in different input frequencies. It is evidence that MRE shows a 

symmetric behavior with an elliptical shape in shear mode in both situations with and 

without an applied magnetic field. For the same strain and the same frequency, the 

captured area of hysteresis loops (that indicates the dissipated energy in each cycle or 

equivalent damping) for an applied magnetic field is larger than those obtained without 

applied magnetic field. Moreover, MRE response stress (for the same strain and the same 

frequency) for the applied magnetic field situation is greater. In addition, applying 

0g
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magnetic field increases the slope of hysteresis loops that characterizes the equivalent 

stiffness of the MRE. Specially, the slope increment with the applied magnetic field is 

more evident in small strain. The hysteresis loops are also affected by the input frequency. 

Figure 5 illustrates the effects of frequency on shape of the hysteresis loop with same 

strain for magnetic flux density B=0 mT and B=272 mT. It is obvious that the slope of 

hysteresis loops as well as captured area of each loop is increased by increasing input 

frequency in both situations with and without applied magnetic field. However, this 

increment for applied magnetic field situation is more evident (Figure 5(b)). In order to 

show the effect of magnetic field in MRE behavior, the typical stress-strain response of 

harmonic shear deformation at constant frequency and strain for different levels of 

applied magnetic field from B=0 mT to B=272 mT are shown in Figure 6. As can be seen, 

for all cases, by increasing magnetic flux density the shape of loops are changed in which 

the slope of the hysteresis loops are increased and the area enclosed by the loops is 

enlarged that means the dissipated energy per cycle by MRE is enhanced. 
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Figure 1. Fixture with MRE specimens and permanent magnets installed on it. 
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Figure 2. Experiment on material testing machine. 
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Figure 3. Hysteresis loops with magnetic flux density B=0 mT (without magnetic field). (a) f=0.1 Hz, (b) 
f=1 Hz, (c) f=3 Hz, (d) f=8 Hz. 
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Figure 4. Hysteresis loops with magnetic flux density B=272 mT. 
(a) f=0.1 Hz, (b) f=1 Hz, (c) f=3 Hz, (d) f=8 Hz. 
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Figure 5. Hysteresis loops under different frequencies with strain =16%. 
(a) Magnetic flux density B=0 mT, (b) Magnetic flux density B=272 mT. 
 

  

 
Figure 6. Stress-strain response under different levels of magnetic flux density with strain =4%. 
(a) f=0.1 Hz, (b) f=3 Hz. 
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Magnetic field dependence of MRE properties 

In order to quantitatively characterizing the effect of applied magnetic field on MRE 

properties, the magnetic field dependence of storage modulus and loss factor is shown in 

Figures 7 and 8, respectively. As shown in Figure 7, shear storage modulus ( ) is 

enhanced quadratically by increasing magnetic flux density in all input frequencies for all 

tested shear strains. The trend of increment is quite same over the range of tested 

frequencies with this distinctive that for higher input frequency the level of ( ) is larger 

and by increasing input frequency the curves are shifted to higher values. Moreover, the 

increment is more remarkable in smaller strain that already observed in hysteresis loops 

of the MRE. Figure 8 shows the trend of change in loss factor versus magnetic flux density 

for different input frequencies and shear strains. It is found that the loss factor increases 

almost linearly by increasing magnetic flux density. This increment is more remarkable 

in larger shear strain. 

Frequency dependence of MRE properties 

The properties of MREs in addition to deformation (strain) are depended upon the rate of 

deformation (strain-rate dependent).The variation of shear storage modulus versus input 

frequency for different magnetic flux densities are shown in Figure 9. It is observed that 

the shear storage modulus increases by increasing input frequency. In other words, the 

MRE shows strain-rate stiffening effect. However, the slope of increment is not uniform 

and varies by the input frequency. The variation of ( ) can be divided into two zones; 

G ¢

G ¢

G ¢
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frequencies smaller than 1 Hz and frequency higher than 1 Hz. Therein, the shear storage 

modulus shows an exponentially increment up to frequency f=1 Hz. Beyond the 1 Hz, (

) increase almost linearly by increasing the input frequency. In the general form, it can 

be concluded that the shear storage modulus of MRE is a power function of frequency 

with the positive power of less than one. However, most studies of MRE were done in 

frequency higher than 1 Hz and therefore the reported relation of ( ) in term of 

frequency is linear (Gong et al., 2005; Kallio et al., 2007; Lokander and Stenberg, 2003; 

Wang et al., 2007). Figure 10 shows the variation of loss factor versus frequency for 

different magnetic flux densities. With the same manner of the ( ), loss factor shows 

different variation in frequencies lower and higher than 1 Hz. The loss factor increases 

almost linearly in frequencies higher than 1 Hz, whereas for frequency lower than 1 Hz, 

the trend of increment is faster and it almost increases exponentially. 
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Figure 7. Shear storage modulus versus magnetic flux density for different input frequencies. 
(a) =4%, (b) =16%. 
 

  

 
Figure 8. Loss factor versus magnetic flux density for different input frequencies. (a) =4%, (b) 
=16%. 
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Figure 9. Shear storage modulus versus frequency for different magnetic flux densities.  
(a) =4%, (b) =16%. 
 

  

 
Figure 10. Loss factor versus frequency for different magnetic flux densities. (a) =4%, (b) =16%. 
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Displacement dependence of MRE properties 

In absence of a magnetic field, due to viscoelastic nature of elastomer, another feature of 

MRE is apparent which is referred to Flether-Gent effect (W.P. Fletcher, 1953) also 

known as Payne effect (Payne and Whittaker, 1971). This phenomenon is defined as the 

decrease of shear storage modulus with increasing amplitude of oscillation (Leblanc, 

2002; Payne and Whittaker, 1971). At the specific applied magnetic field by increasing 

the strain, the magnetic force between magnetic particles, which are embedded in the 

matrix, becomes less. Hence, by increasing strain the shear modulus of MRE is decreased 

as shown in experimental results. In other words, the MRE shows strain softening 

behavior. Additionally, based on the Figure 4 by increasing the strain the slope of main 

axis is slightly reduced. This reduction is referred to strain softening effect, which is 

appeared in linear regime (perfect elliptical-shape loops are apparent in stress-strain 

curves). Figure 11 shows the effect of strain in MRE storage modulus for different levels 

of magnetic flux density. By increasing strain, the storage modulus reduces 

approximately linearly for all tested frequencies. This reduction in ( ) is steeper for 

higher magnetic field levels. As shown in Figure 11, for B=0 mT (without magnetic field) 

the shear storage modulus is not changed as that much and it is almost constant. The 

reduction of shear storage modulus by increasing strain is due to magnetic forces between 

magnetic particles in MRE matrix that has conversely dependence with particles distance. 

Figure 12 shows the effect of strain in loss factor of MRE for different levels of magnetic 

G ¢
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flux density. It is found that the loss factor is independent of strain and it does not change 

effectively by increasing strain. 

  

 
Figure 11. Shear storage modulus versus strain for different magnetic flux densities.(a) f=0.1 Hz, (b) f=3 
Hz. 
 

  

 
Figure 12. Loss factor versus strain for different magnetic flux densities. (a) f=0.1 Hz, (b) f=3 Hz. 
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MRE modeling 

Mathematical model 

Based on the experimental results, the viscoelastic property of MRE in addition to the 

external magnetic field is depended on loading conditions. For all loading conditions at 

different magnetic flux densities, the force-displacement curves indicate perfect elliptical-

shape. In order to predict the response of MRE, a mathematical model based on 

viscoelastic Kelvin-Voigt model is adopted, as shown in Figure 13. As stiffness and 

damping of MRE are depended on external magnetic field, loading frequency and strain, 

these dependencies should be represented in model. Based on the results, the frequency 

dependency with MRE stiffness and damping is represented by a power function. The 

strain dependency with MRE stiffness is represented by a power function whereas MRE 

damping is almost steady by varying strain. Finally, the magnetic-field dependency with 

MRE stiffness and damping is represented by a polynomial function. 

 

 
Figure 13. Modified viscoelastic Kelvin-Voigt model for MREs. 
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    In this model  and  are shear storage modulus and viscosity, 

respectively that their behavior are resembled to the stiffness and damping. Additionally, 

, ,  and B are loading frequency, reference frequency of 1 Hz, strain amplitude and 

magnetic flux density, respectively. The stress-strain relationship is given as below. 

  (1) 

where and  are stress output and strain input. Suppose that the shear strain input 

 is a harmonic excitation. 

  (2) 

     In conventional viscoelastic Kelvin-Voigt model, the shear storage modulus ( ) and 

viscosity ( ) are constant. While in proposed model shear storage modulus ( ) and 

viscosity ( ) are represented as below. 

  (3) 

  (4) 

     Suppose that the input complex strain is  and shear complex modulus is , the 

complex shear stress  can be given by 

  (5) 
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Then suppose that 

  (6) 

where and are shear complex modulus, shear storage modulus and shear loss 

modulus respectively. By substituting equations (5) and (6) into (1), the and can be 

expressed as 

  (7) 

  (8) 

In addition, the loss factor can be calculated as 

  (9) 

Parameter Identification 

The developed viscoelastic model consist five parameters, i.e. aB, b, cB, dB and e. The 

proposed model uses shear strain as an input and then calculates the shear storage 

modulus  and viscosity  that required for the model. Afterward, gives 

the shear stress determined by equation (1). Five parameters are calculated by 

implementing the nonlinear regression algorithm in order to minimize the error between 

experimental stress and model-predicted stress  for each external magnetic 
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field. The difference between model and experiment is represented by fitness function 

error as below. 

  (10) 

where N and M are the number of different experimental data of shear loading conditions, 

frequency and strain, respectively. This optimization is done at different magnetic fields. 

These parameters are calculated and are presented in Table 1. From this table, it is found 

that the parameters a, c and d are magnetic field dependent whereas the parameters b and 

e are constant by varying magnetic field. By increasing the applied magnetic field, 

parameters aB and dB are increased quadratically while cB is increased steadily. At this 

case, a nonlinear curve fit was implemented to these three parameters. 

                   Table 1. Parameters used for phenomenological model. 

Magnetic field (mT)           
0 94.9956 0.09504 -0.0143 2.7917 -0.6410 
100 96.0495 0.09504 -0.0430 2.9170 -0.6410 
180 104.6167 0.09504 -0.0700 3.5417 -0.6410 
230 112.0370 0.09504 -0.0995 4.2083 -0.6410 
272 120.3517 0.09504 -0.1010 4.3750 -0.6410 

 

     The magnetic-field dependent parameters are calculated and listed in Table 2. 

Furthermore, the three polynomial functions are determined from nonlinear curve fit that 

is explained as below. 

2

1 1
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  (11) 

  (12) 

  (13) 

 

                  Table 2. Constant coefficients used for functions of magnetic field. 

Parameter Value 

  

  

  

  

  

  

  

  

Comparison between experimental results and Model estimation 

In this study, four levels for strain, seven levels for input frequency and five levels for 

magnetic field is utilized. Totally, 140 sets of experimental data are gathered as stress-

strain loops that can be modeled only by ten constant parameters. Eight of constants are 

2 1 0
2

B B B Ba a B a B a= + +

1 0B B Bc c B c= +

2 1 0
2

B B B Bd d B d B d= + +

2
2(kPa / (mT) )Ba 44.582 10-´

1
(kPa / mT)Ba 23.067 10-- ´

0
(kPa)Ba 94.869

2
2(kPa.s / (mT) )Bd 52.179 10-´

1
(kPa.s / mT)Bd 44.766 10-´

0
(kPa.s)Bd 2.7544

1
(1 / mT)Bc 43.403 10-- ´

0Bc 21.233 10-- ´
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listed in Table 2 and two constants, b and e, are presented in Table 1. By using the constant 

parameters from system identification methodology, the comparison of experimental 

results and model prediction is shown in Figure 14 to 19. Figure 14 shows the stress-strain 

relationship of MRE at different strains. It can be seen from the Figures that the model 

prediction is fitted perfectly to experimntal results and strain softening effect is accurately 

captured by proposed model. Based on the Figure 14(a) the strain-softening effect 

becomes more obvious at the high frequency and also for higher magnetic flux densities. 

Additionally, the area of hysteresis loops is increased by increasing the strain, which is 

predicted by proposed model very well. As shown in Figure 15, the model pridection is 

completely in accordance with experimental results and strain-rate stiffening is captured 

by the proposed model, properly. Figure 16 shows the effect of magnetic field on 

mechanical properties of MREs that is also appropriately predicted by proposed model. 

It can be seen from the Figures that by increasing the external magnetic field, the slopes 

of main axis and area of hysteresis loops are ascending that are precisely captured by 

proposed model. 
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Figure 14. The stress-strain curves of experimental data and proposed model for different strains. 

(a) B=100 mT and f=0.5 Hz, (b) B=230 mT and f=5 Hz. 

  

 
Figure 15. The stress-strain curves of experimental data and proposed model for different input frequencies. 
(a) =2% and B=0 mT, (b) =16% and B=272 mT. 
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Figure 16. The stress-strain curves of experimental data and proposed model for different magnetic 
fields. (a) =8% and f=5 Hz, (b) =2% and f=0.5 Hz. 
 

     Based on the equations (7) and (9), shear storage modulus ( ) and loss factor ( ) 

can be predicted. Figure 17 shows the relationships of shear storage modulus ( ) and 

loss factor ( ) with magnetic flux density. By increasing the magnetic flux density both 

the shear storage modulus ( ) and loss factor ( ) are increased. This behavior is 

observed for all strain and frequency values. For instance, at the strain of 4% and 

frequency of 8 Hz the shear storage modulus ( ) is increased from 131.4 kPa to 208.2 

kPa, more than 50% increment, which illustrates that MRE has variable stiffness 

behavior. Moreover, the relationship of shear storage modulus ( ) and loss factor               

( ) with frequency is shown in Figure18. It can be seen that model prediction for shear 

storage modulus ( ) is quite good.   
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       However, proposed model could not capture the loss factor ( ) very well. It is 

because of that the loss factor ( ) has different variations in frequency range less than 1 

Hz and more than 1 Hz. Furthermore, the effect of strain on shear storage modulus ( ) 

and loss factor ( ) is shown in Figure 19. By increasing the strain, the shear storage 

modulus ( ) is reduced while, the loss factor ( ) does not change effectively, which 

both these trends are estimated by developed viscoelastic model very well. 

  

 
Figure 17. The relationship of storage modulus and loss factor with magnetic flux density. 
(a) Shear storage modulus at =4%, (b) Loss factor at =16%.  
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Figure 18. The relationship of storage modulus and loss factor with frequency. 
shear storage modulus  at =16%, (b) Loss factor  at =16%. 
 

  

 
Figure 19. The relationship of storage modulus and loss factor with strain. 
(a) Shear storage modulus at f=3 Hz, (b) Loss factor at f=0.1 Hz. 
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                                Table 3. Fitness value of proposed model. 

Magnetic flux density (0 mT) 
Freq. (Hz)      

0.1 85.13 87.65 90.69 92.49 
0.3 91.46 88.03 86.26 90.93 
0.5 87.26 88.85 92.44 92.34 
1 90.03 90.22 91.41 93.14 
3 92.03 90.81 87.91 90.04 
5 88.44 90.41 92.83 93.56 
8 88.35 89.14 91.84 93.99 

Magnetic flux density (100 mT) 
0.1 85.26 89.35 87.59 86.36 
0.3 88.18 92.25 89.66 94.98 
0.5 93.69 91.86 92.52 95.18 
1 93.97 96.45 94.43 93.8 
3 90.32 92.65 95.03 96.34 
5 89.98 94.75 94.03 93.77 
8 92.99 93.37 93.16 93.23 

Magnetic flux density (180 mT) 
0.1 86.35 88.2282 90.09 93.37 
0.3 87.93 87.45 94.66 91.37 
0.5 91.9 92.7 94.75 97.42 
1 91.04 94.48 94.71 95.55 
3 91.8 93.36 95.31 95.01 
5 93.72 93.31 94.09 95.87 
8 92.65 94.63 95.18 94.62 

Magnetic flux density (230 mT) 
0.1 87.97 90.82 92.49 95.06 
0.3 93.72 93.42 95.79 93.53 
0.5 95.93 95.39 96.29 97.82 
1 97.09 94.32 94.58 95.23 
3 92.25 96.82 96.39 94.78 
5 96.26 97.37 98.54 92.98 
8 94.21 97.05 93.91 90.49 

Magnetic flux density (272 mT) 
0.1 88.21 87.28 88.19 91.52 
0.3 86.63 93.12 91.33 96.78 
0.5 95.93 93.03 93.43 96.79 
1 95.81 93.78 94.62 94.94 
3 92.65 94.12 96.05 93.44 
5 92.28 92.31 87.9 94.83 
8 93.88 92.03 98.09 90.97 

0 2%g = 0 4%g = 0 8%g = 0 16%g =
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Calculating the fitness value of proposed model 

The comparison of experimental data and proposed model is evaluated by Figures 14 to 

19. In addition to graphical analogy, the operation of the present model is investigated 

through a quantitative survey for all experiment cases such as different magnetic flux 

densities, frequencies and displacement amplitudes. The normalized root mean square 

function is implemented to calculate fitness value by the following equation: 

        (14) 

 The fitness values are calculated and prepared in table 3. In the most experimental cases, 

the fitness values are higher than 90 % and some cases are more than 95% (Perfect 

fitness). The range of fitness value is from 85.13 % to 98.54 % and the average of fitness 

value is 93.07 %. Based on the Table 3, it is obvious that for low frequency and low 

displacement amplitude, the performance of the proposed model is not very well.  

 

 

Conclusions 

This paper proposed a new phenomenological model based on modified Kelvin-Voigt 

viscoelastic model describing the dynamic behavior of an isotropic MRE in shear mode. 
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Different sets of double lap shear-loading test are conducted. Especially, dependence of 

MRE shear storage modulus ( ) and loss factor ( ) to variation of magnetic flux 

density, loading frequency and strain are experimentally examined. The experimental 

results show that the proposed model with ten constant coefficients could capture 

dynamic behavior of the MRE very accurately, regardless of variation in values of 

parameters such as magnetic flux density, loading frequency and strain. Furthermore, the 

proposed model estimated the behavior of shear storage modulus ( ) precisely in a wide 

frequency range from 0.1 Hz to 8 Hz, which is nonlinear. The experimental results 

showed that the tested MRE material possesses both dynamic stiffness and dynamic 

damping that are controllable through an applied magnetic field. Moreover, the dynamic 

behavior of MRE is affected by loading condition (input frequency and strain). Based on 

the experimental results, the following conclusions are obtained. 

(1) The shear storage modulus of the tested MRE is a function of magnetic-field 

intensity and input frequency as well as strain. The storage modulus is enhanced 

by increasing both the magnetic-field intensity and input frequency and decreases 

by increasing strain. However, the trend of variation of ( ) is not same. The 

incrementing of shear storage modulus is modeled by third-degree polynomial 

function of magnetic flux density over the range of tested loading conditions while 

it increases with input frequency as a power function with the positive power of 

less than one. Additionally, the value of shear storage modulus reduces by 

G ¢ z

G ¢

G ¢
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increasing strain that is predicted by a power function with the negative power of 

less than one. 

 

(2) The loss factor of tested MRE is relied on the strength of applied magnetic field 

and input frequency and it is independent of strain, approximately. The loss factor 

increases linearly by increasing the magnetic flux density while it shows twofold 

behavior with regard to input frequency. So that, it increases exponentially up to 

1 Hz and then increases almost linearly by increasing input frequency. However, 

the strain does not affect the loss factor effectively. 

 

(3) The results show that the proposed model is in accord with experimental data very 

well, indicate that the proposed mathematical model is applicable to simulate 

dynamic behavior of MRE, and it is suitable for control analysis of MRE devices. 
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