Please use this identifier to cite or link to this item:
http://hdl.handle.net/10397/89653
DC Field | Value | Language |
---|---|---|
dc.contributor | Department of Applied Mathematics | en_US |
dc.creator | Gong, W | en_US |
dc.creator | Li, B | en_US |
dc.date.accessioned | 2021-04-28T01:17:22Z | - |
dc.date.available | 2021-04-28T01:17:22Z | - |
dc.identifier.issn | 0272-4979 | en_US |
dc.identifier.uri | http://hdl.handle.net/10397/89653 | - |
dc.language.iso | en | en_US |
dc.publisher | Oxford University Press | en_US |
dc.rights | © The Author(s) 2019. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved. | en US |
dc.rights | This is a pre-copyedited, author-produced PDF of an article accepted for publication in IMA Journal of Numerical Analysis following peer review. The version of record Wei Gong, Buyang Li, Improved error estimates for semidiscrete finite element solutions of parabolic Dirichlet boundary control problems, IMA Journal of Numerical Analysis, Volume 40, Issue 4, October 2020, Pages 2898–2939 is available online at: https://doi.org/10.1093/imanum/drz029 | en US |
dc.subject | Dirichlet boundary control | en_US |
dc.subject | Parabolic equation | en_US |
dc.subject | Finite element method | en_US |
dc.subject | Maximal Lp-regularity | en_US |
dc.title | Improved error estimates for semidiscrete finite element solutions of parabolic Dirichlet boundary control problems | en_US |
dc.type | Journal/Magazine Article | en_US |
dc.identifier.spage | 2898 | en_US |
dc.identifier.epage | 2939 | en_US |
dc.identifier.volume | 40 | en_US |
dc.identifier.issue | 4 | en_US |
dc.identifier.doi | 10.1093/imanum/drz029 | en_US |
dcterms.abstract | The parabolic Dirichlet boundary control problem and its finite element discretization are considered in convex polygonal and polyhedral domains. We improve the existing results on the regularity of the solutions by establishing and utilizing the maximal Lp-regularity of parabolic equations under inhomogeneous Dirichlet boundary conditions. Based on the proved regularity of the solutions, we prove O(h1−1/q0−ϵ) convergence for the semidiscrete finite element solutions for some q0>2, with q0 depending on the maximal interior angle at the corners and edges of the domain and ϵ being a positive number that can be arbitrarily small. | en_US |
dcterms.accessRights | open access | en_US |
dcterms.bibliographicCitation | IMA journal of numerical analysis, Oct. 2020, v. 40, no. 4, p. 2898-2939 | en_US |
dcterms.isPartOf | IMA journal of numerical analysis | en_US |
dcterms.issued | 2020-10 | - |
dc.identifier.eissn | 1464-3642 | en_US |
dc.description.validate | 202104 bcwh | en_US |
dc.description.oa | Accepted Manuscript | en_US |
dc.identifier.FolderNumber | a0602-n13 | - |
dc.identifier.SubFormID | 558 | - |
dc.description.fundingSource | RGC | en_US |
dc.description.fundingText | 15301818 | en_US |
dc.description.pubStatus | Published | en_US |
dc.description.oaCategory | Green (AAM) | en_US |
Appears in Collections: | Journal/Magazine Article |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Gong-Li-23.pdf | Pre-Published version | 357.95 kB | Adobe PDF | View/Open |
Page views
105
Last Week
1
1
Last month
Citations as of Apr 14, 2025
Downloads
79
Citations as of Apr 14, 2025
SCOPUSTM
Citations
10
Citations as of Jun 21, 2024
WEB OF SCIENCETM
Citations
11
Citations as of Oct 10, 2024

Google ScholarTM
Check
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.