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The parabolic Dirichlet boundary control problem and its finite element discretization are considered
in convex polygonal and polyhedral domains. We improve the existing results on the regularity of the
solutions by establishing and utilizing the maximal LP-regularity of parabolic equations under inho-
mogeneous Dirichlet boundary conditions. Based on the proved regularity of the solutions, we prove
O(hlfl/ 9~€) convergence for the semi-discrete finite element solutions for some gy > 2, with gy de-
pending on the maximal interior angle at the corners and edges of the domain and € being a positive
number that can be arbitrarily small.
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1. Introduction

This article is concerned with regularity analysis and numerical approximation of the following Dirichlet
boundary control problem
~ 1 2 o2
urglljild J(ya I,t) = 5 Hy _deLZ(O,T;LZ(.Q)) + E ||MHL2(0,T;L2(F)) (11)
governed by a parabolic equation
dy—Ay=f inQ x(0,T],
y=u onI x(0,T], (1.2)
y(0)=0 inQ,
where 2 C R?, d € {2,3} is a convex polygonal or polyhedral domain with boundary I' = 9, f and
yq are given functions, o and T > 0 are given constants, and
Uy :={ue *(0,T;L*(I)): a<u(x,t)<b ae. (x,t) € x(0,T)} (1.3)
is the admissible control set with pointwise constraints, with given constants a < b.

The Dirichlet boundary control problem is well-known to be challenging due to the variational dif-
ficulty, namely, the Dirichlet boundary conditions do not directly enter the variational setting. Analysis
for numerical approximation of the Dirichlet boundary control problem is delicate because of the low
regularity of solutions and the involvement of the normal derivative of the adjoint state in the first order
optimality condition.
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A priori error estimate for elliptic Dirichlet boundary control problems was first considered in [14],

where convergence of O(h%) was proved for numerical solutions in convex polygonal domains. The
order of convergence was improved to O(hl_l/ 9~%) in [10], where go = 25(37: and € can be arbitrar-
ily small, with @ denoting the maximal interior angle of the domain. Without the pointwise control
constraints, optimal-order error estimate was derived in [43] for both the control and state. Higher-
order convergence was proved in [12] for problems in smooth domains based on the superconvergence
properties of regular triangulation. In [19] the authors used a mixed finite element method for approxi-
mating the elliptic Dirichlet boundary control problem to alleviate the variational difficulty, and proved
O(h'~1/90~€)_convergence for the corresponding numerical solutions. All the results mentioned above
are based on the concept of very weak solutions by choosing L?(I") as the control space. A finite di-
mensional Dirichlet boundary control problem with boundary condition in energy norm was studied
in [55]. Approximation of the elliptic Dirichlet boundary control problem in the energy space setting by

using H 3 (I') as the control space was considered in [46]. We also refer to [8] for a Robin penalization
method for the Dirichlet boundary control problem. For recent results on the regularity of solutions and
numerical approximations for elliptic Dirichlet boundary control we refer to [2], [42] and the references
cited therein. In the recent work [3], improved error estimates O(h*) for the control variable under the
L? norm were derived on general polygonal domains (possibly nonconvex), with s < min(1,7/® —1/2)
for general mesh and s < min(3/2,7/® — 1/2) for superconvergence mesh.

For the parabolic Dirichlet control problem (1.1)-(1.2), well-posedness was proved in [29], where a
semismooth Newton method was proposed for solving the problem. A Robin penalization approach was
proposed in [5]. However, in contrast to the well developed theories for the elliptic Dirichlet boundary
control problem, there are few error analysis for numerical approximation of the parabolic Dirichlet

boundary control problem. We are only aware of [18], where O(h%)-convergence was proved for the

finite element solutions and O(T%)—convergence was proved for time discretization. Clearly, the spa-
tial order of convergence is not optimal in view of the error estimate in [10] for the elliptic Dirichlet
boundary control problem. Related error estimates for parabolic optimal control problems with point-
wise constraints were considered in [13,31,33], we also refer to [23, 24, 50] for numerical methods for
optimal control problems. The objective of this paper is to improve the order of convergence of finite
element solutions to O(h! -/ 90~%), by presenting more delicate regularity and numerical analysis for the
parabolic Dirichlet control problem through utilizing the continuous and discrete versions of maximal
LP-regularity theory of parabolic equations.

Maximal LP-regularity and its discrete analogues are important mathematical tools for numerical
analysis of nonlinear parabolic equations [1,30,45]. For example, the discrete maximal LP-regularity
established in [34] can be used for parabolic optimal control problems with pointwise constraints. How-
ever, the existing results for discrete maximal L”-regularity of finite element solutions [16, 26-28, 34,
36-38] all focused on zero Dirichlet and Neumann boundary conditions and thus cannot be used for the
parabolic Dirichlet optimal control problem, in which the control variable on the boundary is nonzero.
In this paper, we establish several maximal L”-regularity results for parabolic equations and its finite
element discretization under inhomogeneous Dirichlet boundary conditions in terms of the Sobolev—
Slobodeckij and Bessel potential spaces, and then apply the established results to study the regularity
and numerical approximation of the parabolic Dirichlet boundary control problem (1.1)-(1.2).

The rest of this paper is organized as follows. In section 2 we present the notations and main results
of this paper. In section 3 we derive the maximal L”-regularity of the forward problem. In section 4 we
further improve the existing regularity result for the parabolic Dirichlet boundary control problem by
using the maximal LP-regularity results established in section 3. In section 5 we present error analysis
for a semi-discrete finite element approximation to the parabolic Dirichlet boundary control based on
the regularity of solutions proved in section 4.
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2. Notations and main results
2.1 Notations

Let Q C R?, d € {2,3} be a convex polygonal or polyhedral domain with boundary I' = Q. For a
nonnegative integer m and 1 < g < oo, we adopt the standard notation W4 () for the Sobolev spaces
on Q and denote H™(Q) = W™2(Q), LP(Q) = W%P(Q). The inner products of L?(2) and L*(I") are
denoted by

(v,w) ::/ vwdx ¥ v,w e L2(Q) and (v,w)r ::/vwdF Vvwe LXI),
Q r

respectively. For an integer m > 0, we denote by W,"” () the subspace of W™”(R9) consisting of
functions whose supports are contained in . Then W0 () is isomorphic to the space of functions
in W™ (Q) whose zero extensions to R? are in WP (R¢). We denote by W "7 () the dual space of

wy"? ' (Q) for 1 < p < oo, % + p, = 1 and integer m > 1. For a general integer m € Z, we also denote by

W,"P (Q) the subspace of W™ (R?) consisting of functions whose supports are contained in .
For 1 < p,q < o and a fractional number oo = k+ 0, with 8 € (0, 1) and integer k € Z, we denote
by B ,(£2) the Besov space and
W*P(Q) =B}, ,(Q) (2.1)
the Sobolev—Slobodeckij space. The Besov space coincides with the real interpolation space between
two Sobolev spaces (cf. [20]), i.e.,
By () = (W5 (Q), W1 (Q))g 4. (2.2)
On the boundary I', the Sobolev—Slobodeckij space W*?(I'), 0 < o« < 1 and 1 < p < oo, is defined
in the usual way locally in terms of a graph function of the boundary, see [17, Definition 1.3.3.2]. For
—1<a<0and 1 < p < oo, we simply define W*P(I") as the dual of W~ (I'), with 5, + 5 = 1.
Let Bgf,"q(.Q) denote the subspace of Bg’q(Rd ) consisting of functions whose supports are contained
in Q, and denote W, (Q) = ég (). Then
Wil (Q) = (17(2), Wy (R))ap, for a e (0,1).
For o € (0,1) and % < a < 1, the space W,"" () agrees with the subspace of functions in W*”(Q)
with zero traces on the boundary (cf. [20, Proposition 1.25]). For —# <a< % with # + % =1, there
holds Wy"" () = WP (Q).
For a Banach space X and a nonnegative integer k, we define W*?(0,T;X) to be the space of func-
tions f: (0,7) — X such that

s = (| B 1scolar)” <o 23

Throughout this paper, we denote by go € (2, oo] the supremum of ¢ > 2 such that the W24 elliptic
regularity holds for all ¢ € (1,g9). Namely, for g € (1,q), the solution v € H}(Q) of the Poisson
equation

Av=g 24)

satisfies
Vllw2a@) < Cllgllzae), V&€ L™(L), (2.5)
where C is a positive constant, which may depend on g and . In the case d = 2, we have gg = ﬁ
for o € (3,7) and gy = o for @ € (0,7], where @ is the maximal interior angle of the polygon;
see [17, Theorem 4.4.3.7]. In the case d = 3, go has more complicated expressions depending on interior
angles of both edges and corners of the polyhedron; see [11, Corollary 3.9 and Section 4.c].
Besides the Sobolev—Slobodeckij space W*?(Q), we also need the complex interpolation spaces
(cf. [6]) between two Sobolev spaces (called Bessel potential spaces), i.e., for | < p < e and y € (0,1)

HPY(Q) = (I7(Q). WL (2) n WP (Q)) (26
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with HOP(Q) := LP(Q) and H>P(Q) := W, (Q) NW>P(2). The dual of H*'?(Q) is denoted by
H2r7'(Q).

By using (2.5) and a density argument, i.e. choosing a sequence of functions g, € L*() to ap-
proximate a function g € LP(€2), the operator (—A)~!: LP(Q) — W2P(2) N W, " () can be well
defined for p € (1,qo). Therefore, for p € (1,q0), —A can be viewed as a positive operator with domain
D(—A)=W?P(Q) OW()l’p(Q). The fractional powers of —A can be defined; see [53, Section 1.15].

By [4, Theorem 3.9.5], there holds [|(—A)"||r(q)-1r(@) < C(1 +52)e3 bl for s € R. This bounded-
ness of (—A)™ together with [53, Theorem in Section 1.15.3] imply that the domain of (—A)” on L? ()
is the complex interpolation space

D((—=4)") = (LF(R2),D(-A)) forye[0,1] and 1 < p < oo. 2.7
In particular, for p € (1,qo) there holds D(—A) = WO1 P(Q)NW2P(Q). In this case, in view of (2.6) and
(2.7), the domain and range of (—A)? are H*"?(Q) and LP(Q), respectively; therefore, v € H>"P(Q)
is equivalent to v = (—A)~Yw for some w € LP(Q2). By the self-adjointness of —A and duality between
H?'P(Q) and H™ 217 (Q), v € LP (Q) is equivalent to v = (—A)~"w for some w € H™ 217 (Q).

Since (—A)? : H*P(Q) — LP(Q) for all p € (1,qo), by the self-adjointness of (—A)? and du-
ality between H2"?(Q) and H~2V"'(Q), the operator (—A)? can be extended to (—A)Y : L' () —»
H2w (£). Then, by the complex interpolation method (cf. [6]), the operator (—A)Y can be extended
to (—A)Y : HP(Q) — H2'P(Q) for 0 < s < 2y. Similarly, (—A)~7: H=2"7(Q) — H*?(Q) for
0 < 5 < 2y. These domains and ranges are used in the rest of the paper without further mention.

2.2 Regularity of the solutions
The very weak form of (1.2) is to find y € L?(0,T; L*(2)) such that

T T T
- / / V(8,0 + Ap)dxdi = / / Fodxdi — / / uopodsd 2.8)
JO JQ JO JQ JO JIT

for all ¢ € L*(0,T;H*(Q)NHL(Q))NH'(0,T;L*(Q)) with ¢(-,T) = 0, where dp¢ = V@ -n is the
normal derivative of w on the boundary I', with n denoting the unit outward normal on I". For simplicity,
we denote by y = y[u] the solution of (2.8).

The problem (1.1)-(1.2) can be formulated as follows:

. 1 2 o, o
min J(Yvu) = E”y_deLZ(O,T;LZ(.Q)) + EHMHLZ(O,T;LZ(F))
over (y,u) € L*(0,T;L*(2)) x L*(0,T;L*(I"))
subject to (2.8) and u € U,y.
The existence and uniqueness of solutions for problem (2.9) and the corresponding first-order optimality
conditions were shown in [29]. Although the domain is assumed to be smooth in [29], the proof of

existence, uniqueness and regularity results can be extended to convex polygonal or polyhedral domains.
In particular, for any given

ya €L20.T:L2(Q)),  feL*(0.T:H™(Q)),
the optimal control problem (2.9) admits a unique solution (y,«) with the following regularity:

(2.9)

yeL2(0,T;H"(Q)) and wue L2(0,T;H2(I)). (2.10)
Moreover, there exists an adjoint state
1€ LX0,T; H*(Q)NH (Q))NH'(0,T:L*(Q)) (2.11)

such that
—diz—Az=y—y; in Q2 x[0,T),
z=0 onI x[0,7T), (2.12)
Z(T)=0 inQ
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and

T T
/0 L)(y—yd)(y[v]—y)dxdt—F/() /Fom(v—u)dsdt20, VveUy (2.13)
or

T
/ / (0t — 3pz) (v —w)dsdi >0, ¥ v € Uyg, 2.14)
0 r

where y[v] € L*(0,T;L?(Q)) is the solution of (2.8) with u replaced by v. Here the condition (2.14) is
equivalent to

u(x,t) = Py, (o~ dpz(x,1)), (2.15)
where Py, is the projection operator onto admissible control set Uyg.

The first main result of this paper is the following theorem, which improves the existing regularity
results (2.10)-(2.11).

THEOREM 2.1 Let y; € L(0,T;L%(Q)) and f € L(0,T;W~14(Q)) for some g € [2,q0), where qq is
defined in section 2.1. Then the solution of optimal control problem (2.9)-(2.13) satisfies

we L9(0,T; W'~ 9(I)) mw%(l’é)’q(o,T;Lq(r)), (2.16)
y€LX0,T;WH(Q)), 2.17)
2e WH(0,T;L9(2))NLI(0,T; W(2) N W, 4(2)). (2.18)

REMARK 2.1 The regularity of y is L*(0,T;W'9(Q)) instead of L9(0,T;W14(£)). This is due to the
possible incompatibility between the boundary value u and the initial data y(0). In fact, the following
improved regularity result will be proved in the proof of Theorem 2.1.

yeLP(0,T;W(Q)), ifl<p<gand % <p< %.
The proof of Theorem 2.1 is presented in section 4. Clearly, in the case p = ¢ = 2, Theorem 2.1

implies the existing regularity results (2.10)-(2.11). Based on the regularity in Theorem 2.1, we further
investigate the convergence rates of the semi-discrete finite element method below.

2.3 Semi-discrete finite element method

Let S, denote the finite element subspace of H'!(£2) consisting of piecewise linear polynomials subject
to a quasi-uniform triangulation of 2, and let §, = S, N H} (). We denote by S,(I") the restriction of
Sy, to the boundary I'", namely, the space of piecewise linear polynomials on the boundary I".

Let P, : L*(Q) — S, denote the L2(£2) orthogonal projection onto Sy, defined by

(v—Pw,wp) =0, Yw, €8, VveL(Q).
Similarly, let P, : L*(I") — S,(I") denote the L>(I") orthogonal projection onto Sy, (I"), defined by
(v—Pw,wp)r =0, Ywy e Sy(I'), Yve LXI).
For given wy,(¢) € S;,(I"), t € [0,T], the semi-discrete finite element approximation of (1.2) reads:
find y,[wy] € Sp, t € [0,T], such that
(@ovn[wil,va) + (Vyulwal, Vvw) = (fiva) Vi € Sy, V1 € (0,7],
yh[Wh] =Wwy on I x (0, T], (2.19)
yr[wn](0) =0 in Q.
Then the variational discretization approach [23] for the semi-discrete finite element approximation of
(1.1)-(1.2) reads:

min Do) = 51 I7 + 2 2
u = — — u
up €U, yn L2 (0,T3Sp) it 2 = Yalzera@) 2 eI (2.20)
subject to yj, = y[Puy] defined by (2.19).

It follows that the control problem (2.20) has a unique solution (y,,u;,) and that a pair (ys,uy) is the
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solution of the problem (2.20) if and only if there is an adjoint state z, € L*(0,T; Sh) such that the triplet
(Ynszn, up) satisfies (2.19) with wy, = Pyuy, as well as the following optimality conditions:

- (alzh7qh)+ (VZhavqh) = (yh —}’d,l]h)7 VC]h S §ha vt € (Oa T]a

7z, =0 onI" % (0,7T], (2.21)
w(T)=0 in Q,
and
T _ T
| [ on=sa ol —yasde vo [ [ w(v=w)dsat 0, ¥vevu.  @22)

In order to derive an expression from (2.22) in the analogous form of (2.15), we have to define a
discrete normal derivative Q,flzh for the z;, € Sj,. To this end, we define the discrete Laplacian Ay, : S, — S,
via duality by

(Apvis &) = —(Vvn, V), ¥ Gn € S (2.23)
The discrete normal derivative d'v; € S, (I") is defined via duality by
(Onvis S = (Awvns Gi) + (Vv V), ¥ Gy € Su(DD), (2.24)

where Ch € Sy, is any finite element extension of , to the interior domain. Note that in (2.23) we defined
Apvy, to be an element of S, C S, For the functions Ay, € Sj, and Ch € Sy, the inner product (Apvp, Ch)
in (2.24) is well defined. This definition is independent of the choice of the extension Ch € Sj, as for any
two extensions Eh, gh € Sy, of @, € S;,(I") there holds

(A & — &)+ (Y, V(8 — &) = 0. (225)
The definitions (2.23)-(2.24) and equation (2.21) imply
/Faffzh%ds = —(9zn, 9n) — 0 —a, 9n) + (Vzn, Vi), Yoy € Sp. (2.26)

By using (2.19) and (2 26) we derive that
0 < J(up)(v—up)

= / /uh V—uy dsdt+/ / Yo —Ya)(Vn th] yn)dxdt

= / /uh v —uy dsdl+/ — (2, [ Puv] — yu) + (VOulPrv] — yi), Van) dt

_/ /9fZ11()’h[1311V]—yh)dsdt
o Jr

T T ~
= a/ /uh(v—uh)dsdtf/ /8;'111~Ph(v—uh)dsdt
0 Jr 0 Jr

T
= / / (o, — Alizy) (v — up,)dsdt
o Jr
for v € U,y, which in turn implies
u, = Py, (" lzy), (2.27)
which is analogous to the continuous case (2.15).
The second main result of this paper is the following theorem, where we improve the order of

convergence of the finite element solutions based on the regularity of the solution shown in Theorem
2.1.

THEOREM 2.2 Lety, € L9(0,T;L%(R)) and f € L9(0,T;W~1490(Q)), where gy is defined in section
2.1. Then the finite element solution given by (2.20) satisfies the following error estimate:

-1
[t —un]| 2 OTLqO ) 1y =yullzo.r20 @) 112 =2l 20 rwian @) < el ® Ea (2.28)

where € € [0,1 — ) can be arbitrarily small (at the expense of enlarging the constant Cg).
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The proof of Theorem 2.2 is presented in section 5.

REMARK 2.2 The constant C¢ in Theorem 2.2 may depend on € and blow up as € -+ 0. If Q is a
rectangular domain then go = o and thus the numerical solutions have almost first-order convergence.

3. Maximal L”-regularity of the forward problem

In this section, we establish the maximal LP-regularity of parabolic equations under inhomogeneous
boundary conditions, which was used in section 4 to prove Theorem 2.1.

By the Holder estimate of Green’s function of elliptic equations (cf. [22, estimate (1.4)]), the solution
v of (2.4) satisfies

9h0) = 00| = | 3,605 £)6(8) ~ 3,6l (€
< [ 106(x.8) ~ 3,G0:8) (8) g
< [ Oyl (v =& 2T b= 812 )lg(E)ldg

<CHg||L""(.Q)|x7))|6a lngLoo('Q),

where the constant ¢ € (0,1) depends on the domain . Therefore, g € L*(Q) implies v € C'T°(Q)
for some o € (0,1). In this case, the Dirichlet boundary condition implies

Vv =0 at the corners and edges of €2, 3.1
Onv = Vv|r-n € W'=1/44(T) in each flat part I} of I, (3.2)
dnv = 0 at the corners and edges of Q (within each flat part). (3.3)

The properties (3.2)-(3.3) imply d,v € I1 jWOI -1/ %9(I7), the space of functions f on I' such that f €
WO] -1/ %4(I) on each flat part I'; (with zero traces on the boundary of I}). It is clear that
IL;Wy(I;) < W) forboth s =0and s = 1.
By the real interpolation method there holds IT;W;?(I;) < W*4(I") for all s € (0,1). Therefore dyv €
w!-1/44(I") and
1OnVllw1-1/aa(ry < C; 19Vl 1-1/aq ) < ClVlIw2a(0) < Cllslleaa), Ve €L7(R). (3.4)

Since L™(£2) is dense in L7(2), (2.5) and (3.4) imply, for g € [2,go), the solution of (2.4) satisfies

”VHWZ«II(Q) + ”anV”WI*l/q,q(r) < C”g”L‘I(Q)a VgeL1(Q). (3.5)
This result will be used in the rest of this section.

3.1 Maximal LP-regularity under inhomogeneous boundary condition
We firstly recall the maximal L”-regularity under homogeneous boundary condition.
LEMMA 3.1 (Maximal L”-regularity, cf. Lemma 2.1 of [37]) For 1 < p,s < oo, the solution of
dy—Ay=7f inQx(0,T],
y=0 onI x(0,T], (3.6)
y(0)=0 inQ

satisfies the following estimates:

(i) If f € LP(0,T;L*(R2)) then

19yl 0.7 2)) T 1AY e 0.7 2)) < Cllf om0 (02))-
(ii) If f € LP(0,T;W~15(Q)) then
”atyHLl’(O,T;W*LS(_Q)) + ||Y||U’(0,T;W1~S(Q)) < C”]CHLP(O,T;W*LS(_Q))'
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We next consider the maximal L”-regularity under inhomogeneous boundary conditions by applying
Lemma 3.1.

LEMMA 3.2 For f € LP(0,T;H-?~59(Q)) and u € LP(0, T;L5(I')), with 1 < p < o0, g}y < s < o
and € € (0, %} the solution of (2.8) is well-defined and satisfies the following estimate:

19 gy 1015y T IV

< (A1l

LP(0,T:HS ~85(Q))

oo~ +esg )>+||MHLP(O,T;L5(F)))~ (3.7)

Proof. If f and u are smooth functions, then substituting ¢ = (—A)_%(I’Lsi’ﬁ)(p with ¢ € LV (0,T; L5 (Q))
and w = (—A) 215y into (2.8) vield
(O 0) + (V. V9) = (£.(=4) 2"V )9) — (u,30(~2) 2"V ) 1€ (0.7]
where the domain and range of (—A)77<1+?+8) are L* (Q) and H l+si’+g’sl(9), respectively, for s’ €
(1,q0). Since ¢ € L¥ (0,T;L° (Q)), it follows that v = (—A) 2179 e 17 (0,7, B v+ (@)
and therefore Vv € L” (0,T;H sL/JrE’S/(Q)). Consequently, the trace of Vv onto the boundary I" is in
L7 (0,T;L5(I")) (because (& +€)s’ > 1). This implies dpv =n-Vv € L7 (0,T;L(I')). Hence, the

right hand side of the equation above is well defined.
Clearly, the linear functional ¢ : L? (0,T;L* (2)) — R defined by

’ —L(1+d+e)
€9):= | (won(=2) 2 g)rar
is bounded, i.e.,
_1 1
|€(¢)| < CHM”LP(O,T;D I) ||an(_A) 2(1+JJ+8)¢||Lp’(O7T;Lx’(F>)

) 11+ +£¢||

< Cellull o025yl (—
LY (0.T:H

1+ +e,s/ (_Q))

gc«‘?”“”lf 0,7;L5 (I H‘PHU/ OT-LS/<_Q))7
where € € (0, ] can be arbitrarily small at the expense of enlarging the constant Ce. Similarly, by the
duality between H ™~ (L4 5te)s () and gl tes (Q), there holds

[ Gyt agal <cir, |(=a) -2y
LP(0,T:H

(@) L (0,7:H
< CHf” (0.1 H—(1+ +¢€), v( Q)
Therefore, there exists a function g € LP(0,T;L*(£2)) such that

(2,0) = (f,(=A) 205 7499) — (1, 3,(—2) 247 )g) - ae.r€(0,T)

(1+ +€),s 1+ +e,5

(2))

|| (0 ||Lp/ (0,7:15 (Q))"

and

TS < C —+ TS .
lgllzr(o,7:L5(2)) (||f||LP(O)T;H7(1+SL,+S>.5(Q)) llell Lo o,7:L5(r))

Then the maximal L”-regularity of parabolic equation (cf. Lemma 3.1) yields
HatWHLNO,T;Lf(Q)) + HAWHLP(O,T;LS(Q X C”gHU’ 0,T:L5(R))
< (HfHH’(H?H)‘S(_Q) + HMHU’(O,T;LS(F)))»

which implies the estimate (3.7).

Since smooth functions are dense in L”(O,T;H_@_%*'S)’S(Q)) and L?(0,T;L*(I")), the estimate
(3.7) implies that the solution can be uniquely extended to the case

Ferr(0,7;H-C595(Q)) and we LP(0,T;L5(I)).

The proof of Lemma 3.2 is complete. O

Lemma 3.2 gives very weak regularity of y because it only requires the very weak regularity u €
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LP(0,T;L5(I")). Stronger regularity of y requires certain differentiability of u and the following result
on the trace onto and lift from the boundary I".

LEMMA 3.3 Let 1 <5 <oo. For ¢ € L°(0,T;W?5(Q) ﬁWOI’S(Q)) NW$(0,T;L(R)), there holds

19n ‘p”p o= s w3 (7350 7o () SCU Nl orw2s (@) T 10 llwisorias@))- 3-8)

For ¢ € L°(0,T; W'~ 2 S(I)) ﬁW%(l_%)'S(O T;L*(I')) there exists an extension @ such that
<C . 3.9
H(P” OTWIY(Q))mW%"(O,T;LS(Q H‘PH ()TW‘"S(F)) WZ( $)s *(0,T:L5(IN)) 09

Proof. By using Stein’s extension method [49, p. 181, Theorem 5], the function ¢ € L*(0, T; W2*(2))N
W$(0,T;L*(Q)) can be extended to

¢ € L°(0,T;W>* (R)))nW'*(0,T;L* (R?)).
On a half space Ri :=R4"! x R, we note that
¢ € L'(0,Ts WS (RL) W' (0,T; L (RY))  W25(0,T; W' (RL)),
which implies that
0,0 € L(0,T; W (RL)) N W2S(0,T; L (RY)) = LY (R :X) N W (R:Y),
where X = L*(0,T; W' (RI=1)) AW 2+(0, T;L* (R4 1)) and ¥ = L*(0, T; L (R4~1)), dy,¢ denotes the
normal derivative of a function ¢ on the flat plane R?~!. It was proved in [40, Proposition 1.2.10] that
L'(R;X) W (R3Y) < BUC(R (Y, X), 1),
where BUC(R;(Y,X),_1 ) denotes the space of bounded uniformly continuous functions defined on
R with values in the real interpolation space
(V.X), 1, = L0, T W' s (R nw 205050, 7L (RT)).
Therefore, the trace of d, da on the hyperplane JRY = R4~ ! is in
LS(O T.Wlfl..s(Rdfl))ﬂWﬂlf—) (0 T: Ls(Rd ]))
The result above implies that on each face I'; of the boundary I" we have 9, ¢ eL’(0,T,; wi=s S(I;))N
W 2(1=3)(0,7;L5(I)) and

On <
|| (PH OTWP*’(F'))QW%(17%)’°'(07T;L5(Fj)) X

Since ¢ € L*(0,T;W?5(Q) ﬂWOI’S(Q)), it follows that ¢ is the solution of A¢ = f under the ho-
mogeneous Dirichlet boundary condition for some f € L*(0,7;L*(£2)). Then (3.3) and (3.4) imply
On® € W'=1/55(I) for ace. 1 € (0,T) and correspondingly

du € L0, T W'=35(I)) AW 2=)5(0, 75 L(I')).

C(HQEHL!?(O,T;WZ-S(M)) + ”aHW'J’(O,T;LS(Rd)))'

This proves (3.8).

Since £ is a bounded Lipschitz domain, through a Lipschitz continuous transform we can locally
transform the boundary I" to a flat plane R?~! and locally transform the domain & to a half ball con-
tained in the half space ]Ri. If

9 e L’(0,7;W' s @) nw2(-3)5(0,7; L (R 1) = (¥,X),

L)
I

then [40, Proposition 1.2.10] says that any function in (¥,X), 1 , must be the trace of a function

¢ € L'(Ry: X)W (R, 1Y) = L5(0, T WS (RY)) AW 25(0, T; L (RY)).
Transforming back to the original coordinates system and denoting by ¢ the transformation of 5, we
obtain that @ is the trace of ¢ € L*(0,T;W!*(2))N W%*S(O, T;L°()). This proves (3.9). O
With the above preparation we have the following proposition, which extends Lemma 3.1 to inho-
mogeneous Dirichlet boundary conditions.
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PROPOSITION 3.1 Let 1 <5 < oo and 52+ < p < min(s, -%;). Then for

FeLPO,T;W15(Q)) and ue L0, T;W'=5(0)nw2(1=3)<(0, T;L5(I")),
the weak solution of (1.2) satisfies the following estimate:

9l o o,7w15(0))
C(||f|Lp(o,T;Wls v+l

Proof. First, we prove the existence of a function w which extends u from the boundary I" to the
domain £2 such that

W e PRy W (Q) WP (R L (R)), Wlieo=0 and W|r = ulr. 3.11)

In fact for ue L0, T; Wl_’”(F)) Awz(1-3)s (0,T,L%(I')), Lemma 3.3 implies the existence of an
ulr =uonl and

. 3.10
5(0,T; Wl,, (F))mwi(ll)"Y(O,TLL‘Y(F))) ( :

122l s 0,75y + el Cllull (3.12)

5(0,T5L5(Q 1w =+ snew 2730 rs(ry)’
The function u can be further boundedly extended toz € R, (also denoted by u), i.e.,
He L (RyWH(Q) AW (R L(Q)) < C(R W' —37265(Q)).
Such an extension can be made by a reflection with respect to t = 7" and a multiplication with a smooth

cut-off function x such that y = 1 for¢ € [0,T] and y = 0 for r > 2T. However, this extension & may
not satisfy u],—o = 0. The estimate above implies

HeL(RoWH(Q)NW2H (R LH(Q))

s W§+87‘Y(R+; (LS(S'Z),WI’S(Q))I_;_28 ,) (real interpolation)

< CR(L°(Q),W!(Q)), 2y, )

— C(R; W' 37255(Q)). (3.13)
For any 25 1 < p <min(s ,32_31 ), we have —% <l- % < % and thus (see section 2.1)
172 s lfz,s
Wi (@) =w, " (Q). (3.14)
For sufficiently small € we still have —A% <1l- % +e< % and 1 — < 1 — = —2¢. Therefore,
1-2_2¢ 2

177
Ul 0€W177 28‘(9):Bssx () = B;,p" (2)

— (W17;78,X(9)’W17[27+£ S(Q)) »

Bol—

—E,8 1—;+£,s

_2
=W, " ()W "’ (.Q))%p (use (3.14) here)

= (WO*I,S(Q),WO]»“( Q)),_ L (reiteration of interpolation spaces [6, Theorem 3.5.3])

o (WH5(Q), Wy (2)),_

Ly (since W, *(Q) = W 15(Q))

where Wofl"‘“(.Q) denotes the subspace of W~!*(R?) with support on Q. The above embedding result
implies the existence of

Ve LM (R Wy (Q) WP (R W 19(Q)) o LP(R W (Q)) NWEP (R L°(Q))
such that v];,—o = u],—¢ (cf. [40, Proposition 1.2.10]), satisfying

< Clluts= <
H"'” R Wl)(Q))mW%J}(R‘F;Lx(Q)) \C||u|l—0||Bj;%<Q C||u|l OH ——72€Y(‘Q)
s s+ 4 i)
<Cllull, |

S(0,T;W1 5 (F))QWT(17§)‘S(0,T;LS(F)).
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Thus w = u — v satisfies (3.11) and

LP (R Ws(Q)nW 2P (R L8 (Q
Second, we note that y —w is the solutlon of
d(y—w)—A(y—w)=f—dw+Aw in Q x (0,T],
y—w=0 onI x(0,T], (3.15)
y(0)—w(0) =0 in Q,

Laryow2 -3)50.r35(r))

satisfying the weak formulation
T T T T
/ (v— ¥, — 0, — A@)di — / (f,@)di — / (O, @)di — / (Vit,Ve)d:, YoeZ, — (3.16)
0 0 0 0

withZ={p € L” (0, T;Wol’s/(Q)) AW (0, T;W "5 (Q)) : @|;—r =0}. Forany ¢ € L” (0,T;W "' ())
there exists ¢ € Z being the solution of the backward heat equation
—dp—Ap=¢ inQx(0,T],

¢©=0 onI x(0,T], (3.17)
o(T)=0 inQ
satisfying (cf. Lemma 3.1)
H(PHLP’ (O,T;WOLS’ (_Q))mwl,p’ (O,T;W*U/(Q)) < C”¢ ”Lp’ ((LT;W*I,S’(Q))' (3.18)

It follows that

[ .0y

| [ o [ @p- [ vEvoa

C(Hf”Lp 0,7;w— 13 + HWHL[) 0, TW )))H(p”L/’/(O,T;WOl’Sl(Q))

C|lo
+ || tWHW—fp 0,7:15(Q H(pH OTLS (2))

(Hf”LP 0,7;w— “ + HW”Lp 0, TW )))H(p”Lf’/(O,T;WOl’S/(Q))

R TN

< C(”f”LP(O,T;W L) Wl
By the duality argument we obtain
1y =l 0 gy < SO lmoraw- 15+ 171
Therefore,
IYlr0rwis@) < CUfllrorw—1s) W H

< C 2 . v .
(W erioav-tocan = Wl o ov b Do pany)
The proof of Proposition 3.1 is complete. O ]

37 (0.7:15 (Q))
P (0.T; Wl Y(Q))QW%,,,(O?T;LS(Q))) ¢ HLp/(O’T;Wfl,S’(.Q)).

).

P(OTW15(2)) W P(0.T:L5(2)

)

P(0.T3W S (2)) W 3 (0,75L(2))

3.2 Maximal LP-regularity of finite element solutions

Besides the maximal L”-regularity of parabolic equations, we also need discrete versions of maximal
LP-regularity for finite element solutions of parabolic equations. The following discrete maximal L”-
regularity under homogeneous Dirichlet boundary condition is known.

LEMMA 3.4 (cf. Theorem 1.1 of [37]) For 1 < p,s < oo, the finite element solution ¢y(t) € Spte [0,T],
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of the equation
(9B (t),va) + (VOu (1), V) = (£(£),v4) Vi € Sp, V1 € (0,T],
¢n(0) =0,
satisfies the following estimates:
(i) If f € LP(0,T;W~15(Q)) then

1018l o (0,715 (@) + 19nll oo, rw1s@)) < 1F e oz w-15(0))-
(i) If f € LP(0,T;L*(R2)) then
19 nllze0,7:15(2)) + 1AnPnlle0,7:052)) < I flr0,7:05(22))-

REMARK 3.1 In [37, Theorem 1.1] the estimate of [ @x|1» (o 7.w15(0)) in Lemma 3.4 (i) was proved.
Then the estimate of ||0; @[ 1»(o,7,w-1.5()) can be obtained by using the finite element equation, i.e.,

T T T
/0 (O pva)de| = | /0 (V. Vv )dt + /0 (f v )t

< C(”‘Ph”LP(O.,T;W‘»X(Q)) + Hf”LP(O,T;W*LS(.Q))) ||Vh||Lp’(O7T;W1,S<Q))7

which holds for all v, € S’h. By duality we have
||3t¢hHLP(O,T;W*I«S(_Q)) < C(H(phHLP(O,T;WIJ(.Q)) + ”fHU’(O,T;W*lv‘(_Q)))
SClIfllerorw—1s)-

By using the definition (2.24) of the discrete normal derivative, for any given ¢, € S;(I"), the solu-
tion y,, € S, of the finite element problem (under inhomogeneous boundary condition)

(Oynsva) + (Vyn, Vi) = (fovn), Y vn € Sy, V1 € (0,T),

Y =@ on I, (3.19)
yp=0 in Q,
can be equivalently written as
(@ynsvi) = Ons Anvi) = (Fsv) = (P, Ogva)r s ¥ vi € Sy, 1 € (0,T]. (320

This is analogous to the very weak formulation (2.8) of the continuous problem (1.2).
In order to consider maximal L”-regularity of finite element solutions under inhomogeneous bound-
ary condition, we need the following lemma on the stability of the Ritz projection.

LEMMA 3.5 Let Ry : H} (Q) — Sy, denote the Ritz projection, defined by
(V(¢ —Ry9),Vvy) =0, Vv, €Sy, Vo € HJ(Q).
Then for 6 € (0,1) and s > 0~ the following stability estimate holds:
0,
||Rh¢||W09J(Q> < C|h’1]’l‘ H¢HW09~S<Q)7 V(P € WO S(Q)

For 0 € [0,1] and s € (1,0), the following stability estimate holds:

0,
|Ph¢||W09,X(Q) <C||¢HW09~Y(Q)7 V(P eVV() (-Q)

Proof. Tt is known that the Ritz projection is bounded on L*(2) and W!*(Q), i.e., (cf. [22,32])

IR l1(@) < ClInAL[ ]2 (2) Y € L7(Q)NHy (Q),
[Rh®llw1=@) < CllOllwi=(q), Vo e W'(Q)NHy (2).
Via a duality argument, the last inequality implies
[Rh®lw1r(0) < ClIOlwir(a) Vo eWP(Q)NH)(Q), 1<p<ee.
Then the Ritz projection can be extended to Co(£2) and WO1 P(Q), satisfying
IR19llcy@) < ClnAl[[9]lc, @) V¢ € Go(Q), (321

IR 10y < €91yt Vo €W, (@), (322)
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In [19, Proposition 1.6] the author shows that
BY |(RY) < C(R?) — B, ..(RY).
Since l%j,,q(.Q) is isomorphic to the subspace of Bg,’l (R) consisting of functions which are zero outside
Q, it follows that if ¢ € B% | () then ¢ € C(RY) and ¢ = 0 outside Q. This shows that B, | (Q) —
Co(Q). If ¢ € Co(Q) then (P € C(R?) and ¢ = 0 outside Q. Then the embedding C(RY) — B, _,(RY)
implies ¢ € Bw7w(Rd) and ¢ = 0 outside Q, i.e., ¢ € ég,’w(.Q). This shows that Co(Q) < B2 . (Q).
Therefore, we have
B (2) = C(Q) = B .(Q). (3.23)
In [54, Theorem 9.4] the authors show that if min(go,q;) < e then

(B0.10(Q). B, (Q)ig) = B 0% (22),
w1th—+a— % andlq’—o—i—a —é. Setting op =0, pg =0, go =1 and o) = 1, p; = q1 = p yields
(B 1(2),B, ,(2)) :éz/e,q(ﬂ) with 1 — 1% = é

and setting 0fp =0, po = go = and &1 = 1, p1 = q1 = p yields
(BL..(Q),B), ,(2)) = é??/O,p/B
Since WO1 P(Q)= é},, (), the two embeddings above can be written as

(B 1(Q). Wy (Q))e) = B} g, () with1—F =1,

(B (2), Wy (2))10) = BY 9.6 ().
From (3.23) we know that Cy(2) is intermediate between ég (Q) and B0 w(£2), it follows that
BY g ,(2) = (B 1(2),Wy " (Q)) 1) = (Co(Q), Wy " (2))g)
= (Bg,m(Q%Wo’ ())e)

(2).

560
= Bp/e,p/e(Q)' (3.24)
The complex interpolation between (3.21) and (3.22) yields
_ < ) . .
||R]1¢||(CO(Q>~,WOLP(Q> [9 C“Ilh|||¢|| 11(9))[0] (3 25)
By using (3.24) and (3.25) we have
. < ,
||Rh¢||B;9;/6,q CHRh(PH 11(9))[0]
<C|1nh|”¢” 1P(Q)>[9]
<
C|1nh|||¢||,,e/9 @
9]+92

For any 6 € (0,1) and s > 1/6, we choose 6; < 0 < 0, with = 0 and 6, sufficiently close to 6
so that s > 1/6,. For j = 1,2, setting 6 = 6 and p = 56, > 1 in the estimate above yields

. 0;
IRi0 ||, @) SClinhfl9ll, 0, with 1 -5 = 0 (3.26)

Since

5 0.s
(BY, (2),B%,(Q))1 = (B(Q),BE(Q))) =Wy "(Q),
applying the real interpolation method to (3.26) yields

||Rh¢HW09-s<Q) < C|1nh|||¢||W0973(Q), for6 € (0,1) and s > 1/6.

This proves the estimate for R,¢. The estimate for P,¢ is easier: since P, is bounded on both L*(Q)
and WO1 ""(Q) for all 1 < s < oo, which means that the estimate for P,¢ holds for the two end-point cases
0 =0 and 0 = 1, it follows that (by the real interpolation method, cf. [6]) P, is also bounded on the real
interpolation space WS () for 6 € (0,1). O
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REMARK 3.2 We have used the characterization of B’ 5.q(£2) as the subspace of B q(]Rd) consisting of
functions which are zero outside 2. This is 1ndependent of the smoothness of the boundary. We have
also cited the complex interpolation of Besov spaces in [54, Theorem 9.4], which holds for general
Lipschitz domains.

In the case ¢y, € S}, (not necessarily zero on the boundary) we have the following result.
LEMMA 3.6 For 1 < p,s <oo, if ¢ € LP(0,T;W'*(Q)) and ¢y, € L (0,T;S},) satisfy the equation
(0(& =), vi) + (V(9 — 94), Vi) =0 Vv, €Sy, Vi € (0,77,

¢—¢,=0 onI',Vt € (0,T], (3.27)
¢(0) — ¢,(0) =0 in Q,
then
H¢h||LP(0,T;W1 s(Q) S Ceh_H €] Inkl ||¢||Lp 07w eS8 (Q)) (3.28)
16 — ®nllro.7:25@)) + 119 — Onlloo.rwis()) < CHNO oo 7w ())» (3.29)

where € € (0,1— 1] can be arbitrarily small and k = 1,2.

Proof. Let I, be the Scott-Zhang interpolation operator introduced in [48], which preserves the
boundary condition in the sense that

I =¢ onIif¢|reSs,I)
and satisfies the following stability estimate (as a consequence of [48, Theorem 4.1]):

1011 sy S Cell9lly ey YO €W ().
By denoting ¢ = ¢ — I,¢, we have ¢ € W0 '(Q ) O — 19 € Sp,, and (3.27) can be rewritten as
{(3t((P — (9n—119)),va) + (V(@ — (95— 119)), Vvi) =0, Vv, €Sy, V1 € (0,T],
@(0) — ($(0) —1,9(0)) =0 in Q.

W+£:Q

Then
HPh(P— ((ph_Ihd))”LP((),T;WLS(Q))
<R —Rh(p||Lp o.rwis(@)) (cf. [37, Theorem 1.1, inequality (1.11)])

<Ch~ 141 S|P — Rh(PH (inverse inequality)

P(0,T;W's 7+, S(Q))

<Ceh™ '3 s T Inh||| @] (use Lemma 3.5)

L OTWN“(Q))

ol 141 ST Inhl||¢ — Ih¢||LpoTw te0(Q))

< Cgh_1+ s Inh| ||| (use stability of Ij,) (3.30)

LP(0.T5W 5+ 5(2))’
and thus (by the triangle inequality)

195 — 119 Izrorw15(2))
S 1Pep = (90 = 1)l 0w (0)) + 1Ba@llr o, 7w1(0))

< Ceh™ '3 A9, oy e ))+Ch (1=5-e) HPWIIL,,OTW e ()

(use (3.30) and the inverse inequality)

< Ceh™ 5 Il g +Cn 17|

0TW1+“( Q) LPOTWVHS(_Q))

< Ceh_1+ ST Inh|||¢|| (use stability of Ij). (3.31)

LP(0,T;W's +e, S(Q))
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Then a triangle inequality yields
19nlo0.r:w15 (@)
<Non =09l oo rwrs(0)) 119l o0.7:w 15 (0))

<Ceh '+ ”IlnhHld)llLPOTW S 1]

LP(0,T;W's e S(Q))
LT WS+“(Q)) (stability of Ih). (3.32)

This proves (3.28). To prove (3.29), we simply note that

<G5 |

19 = 9nllro.r:es@)) +Al® = nllro.rwis(e)

=110~ (91— 149))|r0,r:25(0)) + 1l @ = (9 — 1)l Loo.rav 1 (@)
<Cllo —31(P||LP(O.,T;L°'(Q)) (cf. [37, Theorem 1.1])

< Chl|@ll oo, 1wis(2))

= Chl|¢ _I~h¢”LP(0‘T:Wl'S(-Q))

< Chk||¢||L,7(07T;Wk,s(ﬂ)), k=1,2. (3.33)
This completes the proof. (]

4. Proof of Theorem 2.1

Since a < u < b, it follows that u € L=(0,T;L(I")). Then Lemma 3.2 implies, for ¢ € [2,q0) (which
satisfies the condmon of Lemma 3.2),

I ty”Lq O R AT HyHLq (0.T:H759(Q))
. < .
Ce(”fHLq OTH" 27%“),(1(9)) + [|u HLq(o,T,Lq(F))) < Ce, 4.1)
where € can be arbitrarily small at the expense of enlarging the constant C¢. In particular, this implies
yeLi0,T;L(Q)). 4.2)

Then applying the maximal L”-regularity (Lemma 3.1) to (2.12) yields
190zl a(0,r509 () +1AZl a0,:00(0)) < CIY = Yallzao,r:092)) < C- (4.3)

1 (-1
As a result, Lemma 3.3 implies dpz € L4(0,T; W'~ 4(I")) W2 (1 ")"q(O, T;L4(I')). Since the Besov
spaces have finite difference characterization [54, Theorem 3.5.3], it follows that the pointwise projec-

11
tion Py, is bounded on Lq(O,T;WP%’q(F)) OW2<1 q)’q(O,T;Lq(F)) and therefore,
(-1
u:PUad((x_la,,z) eLq(O,T;Wl_%’q(F))ﬂWZ(] )’q(O T'Lq(F)). 4.4
Then applying Proposition 3.1 to (1.2) yields, for 1 <p < gand 5.5 <p < q 1,

<C
(0,1 W =) )mwf(’") (0,T:L4(I )))

In particular, p = 2 satisfies the condition 2 T <p< 2" . This completes the proof of Theorem 2.1. [

IYlr0rwra0) < C(”fHLP(O,T;W*lq )+ [l

5. Proof of Theorem 2.2
5.1 Preliminary lemmas

To prove Theorem 2.2, we introduce some technical lemmas in this section. The following standard
estimates for the L? projection and Ritz projection will be used: for y € [0, 1] and qp < s < oo,

129 lls@) < ClIO s V¢ e L’(Q), (G.1
1219 = @l15(@) < Chzyllq)llﬂzrs(g) Vo € H¥(Q), ye[0.1], (5.2)
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1Ph9 — Rud 1) + 1l Phd — Rud |12y < CR 19l 20 Vo € H>(Q). (5.3)

In the case s = 2, the stability (5.1) is a consequence of the deﬁnltlon of the L? projection P,. In [52,
Lemma 6.1] the stability (5.1) was proved for s = co. Therefore, in the intermediate case 2 < s < oo, the
stability estimate (5.1) can be obtained by the real interpolation between the two end-point cases s = 2
and s = co. In the case 1 < s < 2, the stability estimate (5.1) follows from a duality argument.

The error estimate (5.2) is an immediate consequence of the stability estimate (5.1).

In [47] it was proved that if the Ritz projection is bounded in the W' norm for 2 < s < oo then the
error estimate (5.3) holds. Such WS boundedness of the Ritz projection, with 2 < s < e, was proved
for convex polygons and polyhedra in [47] and [22] (where s = oo was proved and 2 < s < oo follows
from real interpolation), respectively. In the case g, < s < 2, (5.3) follows from a duality argument by
using the estimate (2.5) for 2 < g < qp.

LEMMA 5.1 Fory € [0,1] and g < s < oo, the following estimate holds:

[(=2) |25 2) < C(=An) " dnlls(@)s Yoy € Sh, (5.4)
1(=A0)7(Pud — Rud)lls(2) < CH* 2|9l () V9 € 0 (Q). (5.5)

where C is a positive constant independent of h. Moreover, for s € [2,qo) there holds
1(=20) "0l @) < Coll9nll o) ) Yy € Sh, (5.6)

where
smax(1, %d/‘)

n(s) =
(1 —y)max(1, 5 %7) +¥s

<s. (5.7

Proof. The following proof extends the result of [21, inequality (2.18)] from L>-norm to L*-norm.
The inverse inequality and (5.3) imply

14n(Pud — Ri®)|s() < Ch2(|Pud — Rid | s() < ClI9 20 0 Vo eH?(Q). (58
Since AR, ¢ = P,AQ, it follows that
[(=A0)Pud |5 (@) < [(=An)Ru |5 (@) + 1(=20) (Phd — Ri®) |5 (02)
= [|1P,(=A)9s@) + | (=2n) (Pr¢ — Rn®) |5 (2)

<ClPllpes@) Vo € HY(RQ). (5.9)
The complex interpolation between (5.1) and (5.9) yields
1(=20)"Pad |l s () < CllO I gors(a Vo e H(Q), ye[o,1]. (5.10)

Forye [0,1],1 <5 <qo and Celf(Q), we have n = (—A)"7¢ € H2"* (Q) so that
((=A) M (=An) 01, &) = ((=A) 7 (=20) 9w, (—4)"n)

((=2%)"¢n,m)

= (¢n, (—An)"PyM)

< 0nlls@) 1 (=80) " Pan 15 )

SClnlls@)Mllgers @) (use (5.10))
< Cldnlls @)l (=8)" 1l )
<C

Ionllsca 1Sl o,
By duality, the estimate above implies
(=) Y (=A) ®nlls0) < Cllnllis@): ¥ € Si-
Then substituting ¢, = (—Ap,) "¢y, yields (5.4).
The complex interpolation between (5.3) and (5.8) yields (5.5).
Let ¢, = (—A;) "' ¢, and ¢ = (—A) ' ¢,. Then @, is the Ritz projection of ¢ under the homogeneous
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Dirichlet boundary condition, satisfying the standard error estimate
01— P9l 2 () < CH (9]l 0y < CH | 91ll 2,

which implies (using the inverse 1nequahty) for 1 < p < s < qo such that 2+ ¢ S = d

P
on — Pr®ll sy < Chs % gy — P9l 20

<O E |0yl 0

< Ch2+%7%+%7%||¢h\|u7(9)
<Ol ¢nllr ()
Since 2+ % > % implies WP (Q) — L*(Q), it follows that
onlls @) < llon — Pl s (@) + ||Ph(PHLs(9)
< Clonllr0) + H‘P”U
<Cll¢nllro +C||<P||w2p
<Clonllrra +C||¢h||LP
<Cl¢nllr o
Therefore, for s € [2,qo),
(=20) " Onllzs(@) < Clldnllr@),
[9nllzs @) < CllPnllLs(a)
By the complex interpolation, we obtain

1(=An)""Onllzs(@) < Clidnllpni o), ¥ E(0,1),

where 1%;/ + % = ﬁ By choosing p = max(1, %d/s) we obtain (5.6). O

LEMMA 5.2 For f € L2(0,T;L* (R)) and @, € L*(0,T;S,(I")), with gy < 8" < qo, the solution of (3.19)
is well-defined and satisfies the following estimate:

||yh||L2(07T;LS’(.Q)) < C(HfHLZ(QT;LS'(Q)) + H(ph||L2(()7T;LS/(1")))~ (5.11)

Proof. Since gq;, < s’ < qo implies ¢, < s < go, where % + ;1, = 1. Therefore we can apply the result
of Lemma 5.1 below. L
For any given ¢, € S, substituting the test function v;, = (—4y,) " 20+5+8) ¢, € S, into (3.20) and
denoting wy, = (—Ah)’%(”%*e)Phyh e §), yield
(Drwn, &n) + (Vwp, V)

1 1
= (£,(=a) 2 0) — (1,0 (— )2 gy (5.12)
Clearly, the linear functional £ : Sp — R defined by
1 °
(9n) = (gn O (=An) 290, vy €8, (5.13)

is bounded based on the following observations.
Let v = A~!ny, with 1, = Apvy, € S,. Then
(Vv,Veh) = —(Av, 911) = —(T]h, 9;,) = —(Ahvh, 6;,) = (Vvh,VGh), VG;, S §h7 (5.14)
which implies that v, = R, v, where R;, denotes the Ritz projection operator onto Sp. Then
(anva Ch)l“ = (AV, Ch) + (VV»VCh) = (nh7 Ch) + (Vvvvgh)a Vgh € S/’H
which together with (2.24) implies

(Onvi—Pudav, G)r = (Yo =), VGh), VG € S
For any §, € S;(I'), there exists an extension § € Wite *(£2) such that

{=Conl and || whees(q) < CellGhllwes ()
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Let I, be the Scott-Zhang interpolation operator introduced in [48], which preserves the boundary con-
dition in the sense that
Iy¢ = ¢ on I if ¢|F S Sh(F)

Then the function Ch = IhC € S, satisfies

Gi=Conl and |Gl whies(q) YA < Ce||Gnllwes(r)- (5.15)

Ws +£S Q
Therefore,

(0 — Padv. G| = |(V (v =), V)|
< Cllva=viwrsi)1Gillyiv @)

< Chs e I l Zhle.s’ (@) (error estimate for Ritz projection)

VH : 1+L~+€.5<9)

2e > . . .
SCHEY i ses(q Gl 1 e ) (inverse inequality)
SOyt g 1Gllyer () (use (5.15))
< Ch® ||V||H1+ cex(g) 1l ) (inverse inequality on the boundary)

By duality, we see that

Har}llvh_PhaanLX( C||V||Hl+ +ES(Q)

which implies

138l < CUPOR ey +CV e g

< V|l ) + vl
<l

H1+ +£A(Q)

HH— +€, S(Q)
where we have used the stability of P, in L* (I'); see Theorem A.1 in Appendix. By substituting v, =
(—Ah)*%(”%“)q)h, v=(-A)"'n,and n;, = (—Ah)%(l’%’g) @y, into the inequality above, we obtain

1l _
1O (—Ap) 2(1+S+8)¢h||u(r)SCH(—A) lnhHH]-#%-%—&‘,X(Q)

<Cl(=4)" 2075l

<Cl(=a) 219 (=)2 0 gy (g
<C|9nlls@) (use Lemma 5.1). (5.16)
Substituting the estimate into (5.13) yields
(@) < Cllonll o 1 Enlls ), Von € Sp-
By the Riesz representation theorem, there exists g;, € S, such that

(9n) = (g 9n)s YOn €Sh, and lgull,y o) < Cllnlle )
Thus equation (5.12) can be equivalently written as

_lqad o
(Dwh, 0n) + (Vwn Von) = (=40) 2 FORS 0) = (g0 00), YORESH (517D
Then the discrete maximal L?-regularity of parabolic equation (cf. Lemma 3.4 with p = 2) yields

||‘9IW’1||L2 or:r5 (@) T HAhWh||L2 0.7:L7 (Q))
<CU =02 RS 20 705 ) + 80l 20 705 ()
< (Hf”LZ(()A’T;LS’(_Q)) + H(PhHLZ(o’T;LS’(F)))v

which further implies (substituting wy, = (fAh)_%“J’%J“E)Phyh)

101
||(—Ah)2<°" E)PhthLZ(O,T;LS’(Q)) < C(Hf”LZ(O,T;LS’(Q)) + H(PhHH(O,T;LS’(F)))'
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By choosing € € (0, %], we obtain
HPhthLZ(O,T;LS’(Q)) < C(Hf”LZ((),T;Ls/(Q)) + H(PhHLZ((),T;LS’(F)))' (5.18)
To remove the operator P, on the left side of the inequality above, we let @y, be the extension of ¢y, from
I' to Q by setting @, = 0 at the interior nodes of the triangulation. Then

||thL2((),T;Ls’(Q)) < llyn— @HLZ(O,T;LV(Q)) + ||¢h||L2(o,T;Lx’(Q))
= ”Ph(yh - ah) HLZ((),T;LS’(_Q)) + ”ah”LZ(O.T;Ls/(Q))
< ||Phyh||L2(()’T;Lx/<.Q)) +C||ah||L2((),T;Lx/(Q))

< C(Hf||[42(07T;Lx’(Q)) + H (ph ||L2(0,T;LS/ (F)))
This proves the desired result of Lemma 5.2. t
The proof of the above lemma also implies the following approximation result.

LEMMA 5.3 If g}y < s < e and z € L2(0, T; W25(2) NW,*(2)), then
_1_
HanZ_a,]:PhZ”LZ(O,T;Ls(F))<Cgh] s EHZ”LZ(O,T;WZJ(Q)V

where € can be arbitrarily small.

Proof. We denote by Eh € S, the extension of a function §, € S;(I") to the interior of the domain

Q by setting &, = 0 at the interior nodes of the triangulation. Let £, - denote the union of boundary
triangles/tetrahedra. Then

1
Bllriay =Gl < (X WlIGIE-0s))

KjC-Qh,F

o=

gC( Y h|aijF|||Ch|2/°°(8K_,ﬂF)>

K/‘CQ/LF
1

1 ' g
<cit (% KOG o)

KjC.Q],J"

1
< Ch¥ HChHLs’(r)-
From integration by parts and (2.24) we derive

(9nz. G)r = (A2,54) + (Y2, V8, V& € Sy(ID),
and

(Rz, G)r = (AnRiz, §) + (VRAZ,V )

= (PhAZ, Ch)+(VRhZ7VCh)7 VCh ESh(F),
where we have used the identity P,A = ARy, in the last equality. The difference between the two
equations above yields

|(PhOnz — Op Rz, Cu)r|

= |(Az=PiAz,§y) + (V(z— Raz), V)

< llaz=PuAllp @) 1Gill v @) + 1V e = Rid) s @) IVl v g

< Cllzllwes(a) ”Eh”Ls’(_Q) +Chlzlly2s () Ch 1 Gl (@) (here (5.3)is used)

1
< Clillwesio)h? 16l ey
which implies (via the duality argument)

~ _1
||Ph8,,z—3,/:haHLs(p) < Cl’ll § HZHWZ.S(Q).
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Substituting @, = (—Ay)2(1+5+) (Pyz — Ryz) into (5.16) yields
1 1
198 (Phz — Ruz) |5y < Cll(—20) 259 (Pyz — Ry2) | s
< Chl’%*8||z||wz,s(g)- (here (5.5) is used)
The last two estimates imply (via a triangle inequality)
|Padnz— O Pillzsry < Ch'™ 822 o)
Moreover, the L¥(I") error estimate for the L2(I")-projection operator P, (Theorem A.2 in Appendix)
implies
~ _1
thanz_anZHLS(F) ||3nZ|| §Ch1 4 ||ZHW2=S(Q),

~Ls(r)
The last two estimates imply the desired result of Lemma 5.3. O

5.2 Preliminary estimates for uy,

Before presenting error estimates for the numerical solutions, we present some rough preliminary esti-
mates for uy,.
First, the truncation (2.27) implies that a < uj, < b and thus
lun | r=(0,7:2(r)) < C. (5.19)
Second, by the inverse inequality, we have

1 _
oen| 12(0.7:H3 (1) SCh™ 2 |upll20,7;2(ry) < Ch

HZ 0OTiL2 <F))’~We denote by Eh € S, the extension of a function §;, € S;(I") to

the interior of the domain Q by setting {, =0 at the interior nodes of the triangulation. Then
1Glls@) < Ch3 NGl W1<s <
From (2.24) we see that for v, € Sh
|t G| < dwvillizqon 18l i) + V9l 20 IV Gall 2 0y
<O 2 |vill2 (o) Gl

_3
< Ch™ 2 vl 2@ 1Gnll 2
which implies (via the duality argument)

_3
||arIA1V/1||L2(F) S Ch™ 2 |[vall 2 (@)

Nl

(5.20)

Third, to estimate ||uy|| |

Therefore,
HatafzhHLZ(o,T;LZ(r)) = ||9fatzh||L2(o,T;L2(r)>
_3
< Ch™ 2|9zl 20,1:12(0))
_3
SCh2lyn—yal20,7:2()) (use Lemma 3.4)
<Ch™ (”PhuhHL2 o2y T I 20 r2 @) + 1all 22 @))
(use Lemma 5.2 with s = 2)
<Ch i,
From the expression (2.27) we further derive

3
19hunll 2 0,r:22(ry) < Cll9kBnzall 2(0.7:22r)) < Ch 2.
Thus

I 7 _3
|| h||H4 0TL2 ) < HuhH22(0,T;L2(1"))HM/?H;II(OJ';LZ(F)) <Ch 8. (521)
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Overall, we have

1
< T2, .
HE (01120 +|| h” orﬂz(r))\Ch ’ (5-22)

This estimate will be used in the next subsectlon.

llunll 1

5.3 Error estimate for the control in L*(0,T;L*(I"))

We present an error estimate for |lu—uy||;2(g 7.12(r)- Note that u;, may not belong to S(I"), and

T T
a||u—uh|\iz(07T;Lz(r)):/0 (au,ufuh)pdtf/o (atup,u — up)rde

T T ~
< [ o=l =+ [ on—yonlBul —mar, (523

where the last inequality follows substituting v = u;, and v, = u in (2.13) and (2.22), respectively. From
the inequality above we further derive (by inserting some intermediate terms)

T T ~
allu—unll 20,702y < —/0 (y—yhvy—yh)dtJr/o (v = Yn,y — yn[Pyu])dt

T _
—/0 (v =ya>y = Ylun] = (yn[Pou] — yn))dt, (5.24)
this in turn gives

1
ollu— ”h”iZ(OJ;LZ(F)) + 2 ly _yh‘|i2(0,T;L2(_Q))

1 . T -
< 3 |y — yi[Pyu] ||i2(o,T;L2(g)> - /0 (v —ya,y = ylun] — (u[Pru] — yn))dt. (5.25)
It follows from (2.12) that

[ 6y = slenl = Gl )

:/()T/Q(—atzfAz)(yfy[uh}*(Yh[lghu]*wl))dt

T
/OT
‘/OT
-

OnZ, U — Up, — E,(u —uy))rdt (integration by parts)

o (y —y[un)),2) + (V(y —y[un]), Vz) dt

0

/OT
g

T ~
/ Onzyu — up, — Pp(u—uy) ) pdt
0

~

Onz, U —Py(u—wy))rdr  (use 9y (y —y[up]) — A(y— y[up]) = 0)

+
I
(O n[Pate] = y1),2) + (V (va[Paa] = yi), V2)dr

(
(0 (y—yl
(0 (yalPhta) = y),2) + (V (n[Pute] = 1), V2)dt
(
(¥l
(

—/0 (0, vn[Patt] = Y1),z — Puz) + (V(ou[Pate] — yi), V(2 — Pyz) )dt
— I+, (5.26)

-,
-

where

Onz, U — Uy, —Ph(u —uy))rdt

Onz — Ph nZ, u—uh—Ph(u—uh))pdt
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T ~
= —/O (Onz — PyOnz,u — uy)rdt

< [l —wnll 20, 7:22(r)) | 9nz = Padnzll 20 722
<Cllu— ’411HL2(0,T;L2(F)) (| Onz — PhanZHH(o,T;LLI(F))

< Ch'4|ju— |l 20,7.22(r) || 9zl

20w 0(r))
<O lu—wnll 207020 2l 20,7 w2000
< CR 4w —upl| 200 712y (5.27)
where g can be an arbitrary number between 2 and go.
To estimate J,, we note that y,[P,u] — yj, satisfies the following equation in view of (2.19):

(0 (yu[Brte] — y1),vi) + (Y Oon[Pate] — 1), Vvi) =0 W, € 8yt € (0,7,
Ol Phu] — y) (£) = Py — up) on I x (0,7], (5.28)
(yn[Put] — y4)(0) =0 in Q.

Let ¢, = yu[Pou] — yp and ¢ = y[Pu] — y(Pyuy,), and denote @, as the extension of P, (i — uy) to the
interior of the domain by setting ¢, = 0 at the interior nodes of the triangulation. Then, denoting by
J the simplicies adjacent to the boundary I", we have

||(Apl’lHZq/<Q): Z ||(I5hHZ‘I’<K)

Kex

< Y K[| HZ;(K) (IK| denotes the area of the simplex K)
Kex

=Y IK| ||@,HZ; &) (because @y, is zero at the interior nodes)
Kext

< Z K| Pl @hHZ;/ ®AD) (inverse inequality, dimension of I" is d — 1)
Kext

< Chl| @l ) (here |K| < Ch¢ is used),

which implies

18l ) < CHY 1Bl
Then ¢y, — @y, € §h (with zero boundary condition) and therefore
”‘Ph _PII¢/1||L2(()7T;Lq’(Q))
< |1(0n — @n) — Pu(n — 01) ||L2(07T;Lq’ @)t | @ — Pr s ||L2(0,T;L11' (@) (triangle inequality)
< Chl|gn — @HLz(O"T;W.,q/(Q)) +CH¢h||L2(0,T;Lq’(_Q)) (since ¢, — @, =0 onT")
< Ch||¢hHL2(o,T;WLq’(Q>) +Ch”ah”LZ(o,T;wl,q’(g)) +C||ah||L2(07T;Lq’(Q))

< Ch”‘i)hHLz(O’T;WLq/ @) +C||¢/1HL2(07T;LQ/(Q)) (inverse inequality)
1 -
< Ch”(z’hHLZ((),T;WLq’(Q)) +Cha HPh(” - "‘h) ||L2(O,T;L‘/(F))

1
< Ch||¢hHL2(O,T;W1-‘/ Q) -‘rCl’l‘i, Hu — uh”Lz(O,T;qu () (529)
Therefore, we have

T
Jz:/o (O Pn,z— Puz) + (V@ V(z — Pyz))dt

— _/()T(¢h,8t(z—th)) + (Voy, V(z— Ppz))dt



=- /OT(% — Py, 0z — Pyoiz) + (Vy, V(z— Pyz))dt

<160 —Pudnll 20 7.1¢ ()) 192 = Pudizll 207,00 (2))
FNull 20,710 (@)1 = Brzllz 0. rwra(0)

< 119 _Ph¢h||L2(O,T;L‘/(Q))”afZHLZ(O,T;Lq(Q))
+ChllOnll 20 714 (@) 220 7920 ()

< ClPn = Pudnll 20 704 (@) + CHIDI 20 7.1 ()
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1 .
< Ch”(thLZ O,T;Wqu (2)) +Chq, HM - uh“[}(()];]ﬂ’(]")) (usmg (529) here)
+& 1
<C hq’ Inh p +Che ||lu—u o
€ | H|¢”L2(O,T,Hi+£’q @) ” h||L2(07T,L‘1 ()
(using (3.28) of Lemma 3.6)
<cndmallo]' 0 el Ol 200
LZ(o,T;H778'q’( L2(0,T:We (Q)) L2(0,T5L9 ("))
(use interpolation inequality, where 8, = - )
q
< /Jre 1—6¢ L/
Chd "~ |Inhl||¢]| T ||¢HL2 oz (e T ChY lu=unll 20702
L2(0,T;H 4
(since ¢’ < 2)
Lie ~
< Chs |lnh‘HPh” Ph”h”Lz 0,T;L2( ))”y[Ph”]*y(Phuh)”Lz 0.T;:H(Q))
+Ch67 ([t — unl| 20, T-LZ(F)) (use Lemma 3.2 with s = 2)

< Ch7 e k| u—w)'

D D 6,
12 OTLZ ))HP]’IM_PhuhHL€ - 1

200,730 (0)NH (0,7312(I))

1
+Ch' |lu—unll 20, 7:12(r)) (use Proposition 3.1 with p = g = 2)

,+£

< Ch? " |Inh|||lu— >>||u—uhH9£

u
" ”L2 0.7:L2( 2(0.7:H 3 (I)NH 2 (0.T:12(T))
1 ~
+Ch ||u— uhHL2(0 TL2(T)) (stability of the L? projection P, on I")

< Ch‘/+£

where we have used the regularity of u in Theorem 2.1 and (5.22) in the last inequality.
It remains to estimate the term ||y — y;[Pyu]

1
¥ | Inhl||u— uhlle (0.T:L2(I" ))+Chq/Hu_uh”Lz(O?T;Lz(F))v

2
||LZ(O,T;LZ(.Q))
derive

Iy = yalPutdlll 20, 722(0)) < 1y = Puyllizo.r22(0)) + I1Pey — Pay[Putdl |20 722 (2))
+ || Pay[Pyu] — yi [Pyu] 200,752 ()
< ChlIYl 20701 () + Iy = ¥IPhlll 20 722 (2))
+ 1Py [P — v Putd | 20 722 2))

(5.30)

in (5.25). From the triangle inequality we

< Ch|yll 20,701 (@) +Cllu —ﬁhblHLz(O’T;Lz(r)) (use Lemma 3.2 with s = 2)

+ || Py [Pota] — ya[ Pyt 200,732 (02))

-1
< Chlb o, rawracay +CA Nl b,
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+ {| Py [Pyta] — yi [Py 200,732 (02))

<O+ 1Py P =3 P20 1200 (531)
To estimate || P,y[Pyu] — yu [P 12(0.7:12(2))» We note that y[Pyu] and yj, [Pyu] satisfy the following error
equation:
(O Y [Pa] = yn [Pt} vi) + (V (3 [Bte] = yu[Ppaa)), V) =0 Vv € S,
Y[Byid] — yp[Pou] = 0 on I' x(0,T), (5.32)
V[Pute] = yu[Puue] = 0 at 1 =0.
Then the spatially discrete maximal L?-regularity implies (cf. Lemma 3.6 with p = 5 = 2)
1Pay[Pote] = yu[Pull| 20,722 (2
< Chlly[Pud | 20 711 ()

< P .
< Ch(HPhu”H%(o,T;LZ(r))mH(o,T;H%(r)) + £l z20,7:22(0))

(use Proposition 3.1 with p =5 =2)

< Ch(||B
(I ”””H%<o,r;L2<r>>mL2(0,T;W"é’q“ )

<SCh(ful|
H#(0,T:L*(I"))NL?(0,T;W " 47(

< Ch, (5.33)
where the last inequality uses the regularity result in Theorem 2.1, and the second to last inequality uses
~ 1
the fact that the projection operator P, is stable in both L2(I") and W'~ ¢*%(I") for ¢ > 2 (see Theorem
A.3 in Appendix). By substituting the last estimate into (5.31), we obtain
~ 11
1y =yalPard || 207202 (2)) < Ch 4. (5.34)
Then substituting (5.27), (5.30) and (5.34) into (5.25) yields

+1fl207:12()) (since g >2and 1 — é >

) + £l z20,7:22(0))

2
= wnll 20 702
1-6¢

1-1 1—Llyg fe
<Ch q”uiuh”Lz(O,T;Lz(f‘))+C€|lnh‘h q+8 2 ||u7uh||L2(0,T;L2(F))’ (535)
which further implies (combined with (5.25))
L _1_gp,

= unll 207220y + 1y = yulli20.2 @) < CelInh| T8 bt ~a <P, (5.36)

where
3-2-¢
-4 <q
e 143e
q
and € can be arbitrarily small at the expense of enlarging the constant Ce.
Let z,[y](t) € Sy, t € [0,T] be the solution of the following auxiliary problem
— Q2] va) + (Yo, Vi) = 0= ya.va) - Vvu € Sy, Vi € (0,7],
[y =0 on I" x (0,T], (5.37)

[y =0 atr="T.
Then standard a priori error estimate for semi-discrete finite element approximation of parabolic equa-
tion implies
lz =zl 207201 (2)) < ChIlY = yall20,7,12(0)) < Ch. (5.38)

Therefore,

llz—2zn ||L2(O7T;H1 (Q))

<llz=zblllz o781 @) + 120 = 28l 20701 (2)

<Ch+|ly=yulli207:02(0)) (use Lemma 3.4 with p =5 =2)
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< Cel|Inh| "% n' P (use (5.36)). (5.39)
This proves
e —unll 20 722(r)) + 1Y = Yull20.7:22(0)) + 12— 20l 120,751 ()
< Ce|Inh| 1% pl=1/1—¢be.
Since g € [2,q0) can be arbitrary and € can be arbitrarily small in the inequality above, it follows that

for arbitrary given g € [2,qo) the following estimate holds:

1—1
llu—unll 20 .22(0y) + 11y =il 20, m2202)) T 12— 2l 20,7001 (@)) SCR 1 (5.40)

5.4 Error estimate for the control in L*(0,T;L%(T"))

It remains to improve the norms of (5.40) to the norms of (2.28). To this end, we consider the case

qG[ZQO)
Note that
O (Phz — zn) + Ap(Pnz — z21) = Ap(Phz — Rpz) — Py(y —yp)  fort €[0,T),

Piz=z,=0 onI" x[0,T), (5:41)

Piz=2,=0 atr="T.
For v > 0, multiplying the above equation by (—A;,) " and denoting v;, = (—Ay,) ¥ (Pyz — z1,), we obtain
Orvi+ Ay = —(—An)' "V (Phz— Raz) — (=) "Pu(y—yn)  forz€[0,T),

vy =0 onI x[0,7T),
v, =0 atr=T.
By applying the maximal L”-regularity (Lemma 3.4) to the (backward) equation above, we obtain
I(=An)vall 2072000y < Cl— (—An) Y (Puz— Ruz) — (=80) TPy = yi) 20, 7:20(02))
<=0 (Puz = Ru2) |l 20.7:29(2)) + CIB O =9 | 2070000 (@)

where we have used the triangle inequality and (5.6), with some 1 (g) < g. By choosing y = %(1 - % —€)
in the inequality above, we obtain

1 1
H (—Ah) 2(]+q+€>(PhZ - Zh) H[}(O,T;L"(Q))

1 1
<Cll(=a0)2" ) Bz = Rz) | 20,1000y + 1B =0 20 ranor )

(e ! : . :

<Cch 9t p,; = Rzl 2 0,7:29(2))  CIPR Y =Yl 20,7000 (2 (inverse inequality)
1 .

<Ch'"a g||Z||L2(O7T;H2.q<Q)) +CIB =yl 20,7010 () ((5.3) is used here)
1—1_

SCh ™4 +Clly=yull 20 rna @))» (5.42)

where we have used the stability of P, in L9 (&) and the regularity of z in Theorem 2.1 (note that

72 _ 2. 1,9 . . . . . l(l+l+8)
H>4(Q) =W=4(Q)NW,(L)). Then (5.16) implies (substituting ¢, = (—A,)2" "¢/ (P,z — z;) and

setting s = q)
1 1
108 (Phz — z) laqry < €I (=) 27 (Piz — 23) | aaa)-

Thus
19nz = A znll 20,729y

< |[Onz— ar’thhZHLz(O,T;L‘I(F)) + Ha,f‘(th —2n) HLZ(O,T;Lq(F))

Logl
< [|dnz— &rilPhZHLZ(O,T;Lq(F)) +Cl[(—=4n) 21y re) (Prz _Zh)”L‘!(.Q)
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1,,,

1—1_
< Ch ||Z||L2(O7T;W2-‘1(.Q)) +Cha " +Clly _)’hHLZ(o,T;Ln(q) (Q))
(use Lemma 5.3 and (5.42))
1
< Chl ¢ +C||y _)’hHLZ(o,T;Ln(q) (Q))’ (5.43)
which implies
[|u ”h||L2 0,7;L4(I < |[onz— 8hZh||L2(O,T;L‘1(F))
<Ch' N +C||y_)’hHLZ(o,T;Ln(q)(Q))- (5.44)
Note that
y=yn = (V[u] = y[Puu]) + (y[Puuu] — yn[Pau]) + (Ya[Patt] — yn[Poutn]), (5.45)

and yy, [E,u] — Y [E,uh] € Sy, is the solution of
(9 (yu[Pute] — y[Pouen]),vi) + (Y Ol Pae] = yu[Puun]), Vo) =0 Vv € Syt € (0,77,

yh[ﬁhu} *yh[ﬁhuh] = Pyu— Pyuy, onI x (0,T],
Vi [Putt] — yn[Paup] =0 att =0.
By using Lemma 5.2 with s’ = ¢, we obtain

||Yh[Ph“]_Yh[Ph“h]HLZ(o,T;Lq( Q) C||Ph”_Ph”hHL2 (0,T:L4(I"))

<
< Cllu—unll 2007500 (r)

1—1_
<Ch o« +CHy_yh||L2(0,T;Ln(q)(g))a (5.46)

where the last inequality is due to (5.44). The estimate (3.29) of Lemma 3.6 implies
\[y[Pate] = yn[Prta] || 20, 7:00(02))
< Chlly[Pyu] HLZ(O,T;WW(Q))

< Chl|P,
| hM”LS(o,T;Wl’$~q(F))mW%(1*%)(O,T;Lq(r))

< Chl|ul]
LI(0,T;W

s

(use Proposition 3.1)

a9 ryew 2 (738 0.y
Ch, (5.47)

N

~ 1
where the second to last inequality is due to the stability of P,u in Wl_ﬁ’q(F ) for ¢ > 2; see Theorem
A.3 in Appendix. By using Lemma 3.2 with s = ¢ (note that g, < g < ), we have

[y[u] = y[Pau] 20,7292y < Cllu— ﬁh””ﬂ(o,T;Lq(r))

1
< Ch'"ul 1
W' 4(r))

<Ch' 1. (5.48)
Substituting (5.46)-(5.48) into (5.45) yields
1—1_
lly— yh”LZ(o,T;Lq(_Q)) SCha°+ Clly —yh”Lz 0,7:L7(0) (Q))

1- ¢]
< Ch +C||y yh”LZ OTLZ HyithLZ (0,T:L4(L2))

(with 6 € (() 1) determined by Te —i—g = ﬁ)

1-1_
SCh ™4 +Celly—yull 2 o.1:2@) TEIY =yl 207090

where € can be arbitrarily small at the expense of enlarging the constant C¢. By choosing € < 5 ! the last
term on the right-hand side can be absorbed by the left-hand side. Then we obtain

-1 1—1_
||y—yh||L2(o,T;Lq(Q))<Ch ! 8+C£||y_yh||L2(O,T;L2(.Q))<Ch a7f (5.49)
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Moreover
”Z*Zh”LZ(O,T;WUI(Q))
<llz=zblllzorwra@) + 12Dl — 20l 20, 7w1900))
< Ch+|ly=yullz207:09(0) (use Lemmas 3.4 and 3.6 with p = 2,5 = g and k = 2)

1
< Ch'=5~*¢ —|—C||y _yh”LZ(o,T;Ln(q)(_Q)) (5.50)
where we have used (5.49) in the last inequality. Then the estimates (5.44), (5.49) and (5.50) imply

1—1_
llz— ZhHLZ(O,T;WW(Q)) +ly _thL2(0,T;Lq(Q)) +lu— ”h||L2(0,T;L‘i(F)) <Chat (5.51)
By the inverse inequality of the finite element space, we have

1Pz = znll 20, 7sw190 (@) + IHhY = Yull 20,7290 () + 1Pt — unl 20,7290 (1))
11 - -
< Cho ™1 (||Poz =zl 20, 7:wra (@) + HnY = Yall 20 7:00(0) + 1Pat = wnll 120 7-00(r)))

11
<Chio 4 (||lz— 2o rwra)) + 11 —=vull 20,7509y + lu—un ||L2(0,T;L<1(F)))
+ (1Puz = zll 20 rwraqay) + 10y = Yll2 0,00 (0)) + 1Bt — ull 20 7:0(r))
< cn' i G a)

Since g € [2,4qp) can be arbitrarily close to g, it follows that

~ > -1
1Pz = znll 120, 7w 190 (@) + 1Y = Yall 20,7290 (@) + I1Bast — il 20,7190 (ry) < Ceh %07,
where € can be arbitrarily small. Then by using the triangle inequality again we obtain (2.28). ]

6. Numerical example

In this section we present a numerical example to support our theoretical analysis on the convergence
rates of the numerical solutions.

(—1,1) (1,1)

(0,0) (1,0)
FIG. 1. The computational domain.

For simplicity we consider an unconstrained problem (which has the same order of convergence as
the constrained problem) defined in a polygonal domain such that the maximum interior angle of the
domain is @ = %7:, as shown in Figure 1. Thus Theorem 2.1 holds with gy = ﬁ = 3. The following
data are chosen:

{—1 0<x <05,
Yd =

1 otherwise, =1 ’
Since the exact solution for this problem is unknown, we use the backward Euler scheme for time
discretization to solve the optimal control problem and take the numerical solution with sufficiently

small time step size T = ﬁ and sufficiently large degree of freedom Dof = 193409 as the reference
solution.

We present in Table 1 the convergence order in the L?(0,7; L3 (I"))-norm for the control, L%(0, T; L*(Q))-

_I_
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norm for the state and L?(0, T; W'3(£))-norm for the adjoint state, where the numerical solutions with
different Dof are all calculated by using the sufficiently small time step size T = ﬁ% so that the error of
time discretization is negligible in observing the order of convergence of spatial discretization.

The convergence rates of the numerical solutions are calculated by using the formula

2log([lu = unllz2(,r3) /14 = unpollr20.7:23))
log(3121/809)
2

based on the finest two meshes. We can observe from Table 1 approximately O(h3) convergence for the
spatial discretization of the control u and first order convergence for the state y and adjoint state z. This
agrees with the elliptic case [43] and indicates that the error estimate for the control is optimal (up to an
€ order), while the error estimate for the state and its adjoint may still be improved.

Convergence rate =

Table 1. Error of the control u, the state y and adjoint state z with fixed time steps 4096.

Dof ||u7uh||L2(07T;L3) HY*)’hHLZ(o,T;L»‘) HZ*ZhHLZ(o,T;WM)
62 45144%x102 2.4668x1072 5.1271x1072
217 2.0256x 102 8.1889x 103 2.5602x 102
809 1.1758x 1072 3.4529% 1073 1.3135x 1072
3121 7.5226x1073 1.6338x 1073 6.6149x1073
Convergence rate 0.66 1.10 1.01

7. Conclusion

In this article, we have proved O(h!~'/90~¢) convergence of the semi-discrete finite element solutions
of the parabolic Dirichlet boundary control problem in convex polygons and polyhedra, where € can
be arbitrarily small and go > 2 depends on the maximal interior angle of the corners and edges of the
domain. To prove this almost optimal-order convergence, we have established several results on the
maximal LP-regularity of parabolic equations under inhomogeneous Dirichlet boundary conditions in
both continuous and discrete settings. The order of convergence of fully discrete finite element solu-
tions of the parabolic Dirichlet boundary control problem remains open. The analysis for fully discrete
numerical solutions may need further refined L? estimates of fully discretized parabolic equations.
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Appendix: Stability of P, in L”(I") and W7 (I'")

If d =2 then the LP(I") stability of the projection operator P, has been proved in [9] for 1 < p < oo. Inthe
following, we prove the stability of P, on LP(I") in the case d = 3. In this case, I is a two-dimensional
surface consisting of a finite number of flat pieces, partitioned into quasi-uniform triangles. Under this
setting, the L (I")-stability of P, can be proved by mimicing the proof of [52, Lemma 6.1] (which is
concerned with the stability of the L? projection in LP () for a planar domain ). The details are given
below.

LEMMA A.1 Let K be a triangle on I, and let Iy be a subregion on I" disjoint from K. Then
dist(I,Kg)

||F~’hv||,_z(1—0) <Ce a2k, ifvE L*(I") and supp(v) C Ko. (A.1)

Proof. To prove this, we start with Ry = Ky and define R;, j =0, 1,..., to be a sequence of sets such that
R; is the union of closed triangles on I" which are neighbours of Uy ;R (but not contained in Uy« jRy).
By the quasiuniformity of the triangulations, the points in R; have a distance to Ko which is bounded
above and below by a constant times (j — 1)h. For the set D; = Uy~ jRx, we show that there exists a
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constant ¥ > 0 such that
||PhV||22(DJ.) < K||thHi2(Rj) = K(”PhVHiZ(DFl) - |‘PhV||1%2(Dj))a j=z1 (A.2)
Then
~ K .
||th||i2([)j) < — K+ 1 H h HLZ Sy J = L
Iterating the inequality above yields

52 K\ 5 2 .
||th||L2(Dj) < K+ 1 HPhVHLZ(K0>a J = 1.

Let C=2/In(%tl). Then == ¢~ ¢ and therefore

( Ko)

5 —ZinD 112 1 2
A A I

dlst(

< Ce™

This proves Lemma A.1. It remains to prove the inequality in (A.2).
Since supp(v) C Ko, it follows that (P,v, x) = (v,x) = 0 for all ¥ € S;,(I") with supp(x) C D;_ for
j = 1. We can choose ¥ € Sj,(I") with ¥ = B,vin D; and ¥ = 0in I'\D,_;. Then

0= (B ) = |Bvlzgp, + [ Bva
J

”V”LZ (Ko)? ] > L.

which implies _ _
1Bl ) < 1Bz |12 2ce,

On a triangle K C R}, the finite element function X coincides with P,v at one or two vertices and vanishes

at the remaining vertices. This implies ||2]|,2(x) < «||Py| 12(k) for some constant k. Substituting this
into the inequality above yields the inequality in (A 2). O

THEOREM A.1
1B llory < CIVIlerry, Vv ELP(T), 1< p< oo, (A3)

Proof. Let J# be the set of triangles on I". Suppose that P,v attains maximum on a triangle Koy € 7.
For each K € 7', we define vg € L™(I") by setting vg =vin K and vg = 0in I'\K. Thenv =Y g » vk
and therefore, by the triangle inequality,
1Pl =y = 1Pl =(xo) < Y [Prvillz=(k,) < Y h! 1PVl 22 (k)
Kext Kex
where we have used the inverse inequality on the triangle Ky. By using Lemma A.1, we obtain

v e
1Bvll=ay < Y, W I Pvkllza k)
Kex

< Y nlce

Kext

dlSt(KO K)

vkl 2k (Lemma A.1)

< Z 1Ce Ch||v||Lm (Holder’s inequality and vk = v in K)
Kex

s . .
<CY Y e vl (dist(Ko,K) ~ (j— 1)h on R;)
j KER;
< CZje*% Vllz=(r) (the number of triangles in R is < Cj)
J
<Cllz=r)
where we have used }; je_% <CJy se~¢ds < Cin the last inequality.
The self-adjointness of P, and a duality argument would imply ||B,v||;: ) S ClvllLi(ry- Then the
real interpolation between the stability estimates in L' (I") and L=(I") yields the result of Theorem A.1
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forall 1 < p < eo. Q
From the proofs of Lemma A.1 and Theorem A.1 we see that the proof for the L?(I")-stability of P,
is the same as the proof for LP()-stability of P,. The nonsmoothness of I" does not bring any difficulty
into the analysis of L?(I")-stability.
The stability estimate in Theorem A.1 implies, for arbitrary v € LP(I") and ¥, € S,(I"),
1Pev = vlizery < B = 20) oy + X0 = Vllo ) < Cllv = 2l o),
which implies

Pyv—v <C min |v— , Yvel’(I'), 1< p<eo.
1Py =vllzr(r) xhesh(F)H Xnller(r) (I p

This implies the following result.
THEOREM A.2
1Bwy =Vl < CRO|llywourry, 0 €[0,1], 1< p<eo. (A4)

For p > 2 the Sobolev embedding W' (I") < C(I") holds. In this case, it is well known that the
Bramble—Hilbert lemma (this is only based on analysis in a single triangle, therefore still valid on the
surface I") implies

||ﬁhv||W1~P(F) < CHVHWI«P(F)a for p>2 (A.5)
and
[1Pwy = Il Lo (ry < ChIVIIwrp(ry,  for p>2. (A.6)
By using the triangle and inverse inequalities, we have
[Pavllw oy < N1Pwv = Ipvllyp )+ (vl oy (triangle inequality)
< Ch Y|Py — ﬁthUz(F) + ||I~Thv|\W1,p(1—) (inverse inequality)
< C||v||W1.p(F) for p > 2. (Theorem A.2 and (A.5)-(A.6))

This together with Theorem A.1 imply that P, is stable in both L”(I") and W' (I") for p > 2. The real
interpolation between the LP(I") and W' (I") stability estimates (together with the end-point cases)
yields the following result.

THEOREM A.3
1Pavllwosry < Clvllyerqy forve WOP(I), p>2, 6 €[0,1]. (A7)

REFERENCES

[1] G. Akrivis, B. Li, and C. Lubich, Combining maximal regularity and energy estimates for time discretizations of quasilinear
parabolic equations, Math. Comp., 86 (2017), pp. 1527-1552.

[2] T. Apel, M. Mateos, J. Pfefferer and A. Rosch, On the regularity of the solutions of Dirichlet optimal control problems in
polygonal domains, SIAM J. Control Optim., 53 (2015), pp. 3620-3641.

[3] T. Apel, M. Mateos, J. Pfefferer and A. Rosch, Error estimates for Dirichlet control problems in polygonal domains:
Quasi-uniform meshes, Math. Control Relat. Fields, 8 (2018), pp. 217-245.

[4] W. Arendt, C. J. K. Batty, M. Hieber, and F. Neubrander, Vector-valued Laplace Transforms and Cauchy Problems, ond
ed., Birkhduser/Springer, Basel, 2011.

[5] F. B. Belgacem, C. Bernardi and H. E. Fekih, Dirichlet boundary control for a parabolic equation with a final observation
I: A space-time mixed formulation and penalization, Asymptotic Analysis, 71 (2011), pp. 101-121.

[6] J. Bergh and J. Lofstrom, Interpolation Spaces, An Introduction, Springer-Verlag New York 1976.
[7] C. Bernardi, M. Dauge, and Y. Maday, Polynomials in the Sobolev World, Working paper or preprint, September 2007.

[8] E. Casas, M. Mateos and J. P. Raymond, Penalization of Dirichlet optimal control problems, ESAIM: Control Optim. Calc.
Var., 15 (2009), pp. 782-809.

[9] E. Casas and J. P. Raymond, The stability in W*4(I") spaces of L?-projections on some convex sets, Numer. Funct. Anal.
Optim., 27 (2006), pp. 117-137.

[10] E. Casas and J. P. Raymond, Error estimates for the numerical approximation of Dirichlet boundary control for semilinear
elliptic equations, SIAM J. Control Optim., 45 (2006), pp. 1586-1611.



[11]
[12]

[13]

[14]

[15]

[16]
[17]
[18]

[19]

[20]
[21]

[22]

[23]

[24]

[25]

[26]
[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]
[40]
[41]

31 of 32

M. Dauge, Neumann and mixed problems on curvilinear polyhedra, Integr. Equat. Oper. Th., 15 (1992), pp. 227-261.

K. Deckelnick, A. Giinther and M. Hinze, Finite element approximation of Dirichlet boundary control for elliptic PDEs on
two and three-dimensional curved domains, SIAM J. Control Optim., 48 (2009), pp. 2798-2819.

K. Deckelnick and M. Hinze, Variational discretization of parabolic control problems in the presence of pointwise state
constraints, J. Comput. Math., 29 (2011), pp. 1-15.

D. A. French and J. T. King, Approximation of an elliptic control problem by the finite element method, Numer. Funct.
Anal. Optim., 12 (1991), pp. 299-314.

D. A. French and J. T. King, Analysis of a robust finite element approximation for a parabolic equation with rough boundary
data, Math. Comput., 60 (1993), pp. 79—-104.

M. Geissert, Discrete maximal L? regularity for finite element operators, SIAM J. Numer. Anal., 44 (2006), pp. 677-698.
P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman, Boston, MA, 1985.

W. Gong, M. Hinze and Z. J. Zhou, Finite element method and a priori error estimates for Dirichlet boundary control
problems governed by parabolic PDEs, J. Sci. Comput., 66 (2016), pp. 941-967.

W. Gong and N. N. Yan, Mixed finite element method for Dirichlet boundary control problem governed by elliptic PDEs,
SIAM J. Control Optim., 49 (2011), pp. 984-1014.

D. Guidetti, On interpolation with boundary conditions, Math. Z., 207 (1991), pp. 439-460.

M. Gunzburger, B. Li, and J. Wang, Convergence of finite element solutions of stochastic partial integro-differential equa-
tions driven by white noise, Numer. Math., 141 (2019), pp. 1043-1077.

J. Guzman, D. Leykekhman, J. Rossmann and A. H. Schatz, Holder estimates for Green’s functions on convex polyhedral
domains and their applications to finite element methods, Numer. Math., 112 (2009), pp. 221-243.

M. Hinze, A variational discretization concept in control constrained optimization: The linear-quadratic case, Comput.
Optim. Appl., 30 (2005), pp. 45-63.

M. Hinze, R. Pinnau, M. Ulbrich, S. Ulbrich, Optimization with PDE Constraints, Mathematical Modelling: Theory and
Applications 23, Springer Netherlands, 2009.

H. Jia, D. Li and L. Wang, Global regularity for divergence form elliptic equations on quasiconvex domains, J. Differential
Equations, 249 (2010), pp. 3132-3147.

T. Kemmochi, Discrete maximal regularity for abstract Cauchy problems, Studia Math., 234 (2016), pp. 241-263.

T. Kemmochi and N. Saito, Discrete maximal regularity and the finite element method for parabolic equations, Numer:
Math., 138 (2018), pp. 905-937.

B. Kovics, B. Li and C. Lubich, A-stable time discretizations preserve maximal parabolic regularity, SIAM J. Numer.
Anal., 54 (2016), pp. 3600-3624.

K. Kunisch and B. Vexler, Constrained Dirichlet boundary control in L? for a class of evolution equations, SIAM J. Control
Optim., 46 (2007), pp. 1726-1753.

P. C. Kunstmann, B. Li, and C. Lubich, Runge—Kutta time discretization of nonlinear parabolic equations studied via
discrete maximal parabolic regularity, Found. Comput. Math., 18 (2018), pp. 1109-1130.

D. Leykekhman and B. Vexler, Optimal a priori error estimates of parabolic optimal control problems with pointwise
control, SIAM J. Numer. Anal., 51 (2013), pp. 2797-2821.

D. Leykekhman and B. Vexler, Finite element pointwise results on convex polyhedral domains, STAM J. Numer. Anal., 54
(2016) , pp. 561-587.

D. Leykekhman and B. Vexler, A priori error estimates for three dimensional parabolic optimal control problems with
pointwise control, SIAM J. Numer. Anal. 54 (2016), pp. 2403-2435.

D. Leykekhman and B. Vexler, Discrete maximal parabolic regularity for Galerkin finite element methods, Numer. Math.,
135 (2017), pp. 923-952.

D. Leykekhman and B. Vexler, Discrete maximal parabolic regularity for Galerkin finite element methods for non-
autonomous parabolic problems, SIAM J. Numer. Anal., 56 (2018), pp. 2178-2202.

B. Li, Maximum-norm stability and maximal L? regularity of FEMs for parabolic equations with Lipschitz continuous
coefficients, Numer. Math., 131 (2015), pp. 489-516.

B. Li and W. Sun, Maximal L? analysis of finite element solutions for parabolic equations with nonsmooth coefficients in
convex polyhedra, Math. Comp., 86 (2017), pp. 1071-1102.

B. Li, Analyticity, maximal regularity and maximum-norm stability of semi-discrete finite element solutions of parabolic
equations in nonconvex polyhedra, Math. Comp., 88 (2019), pp. 1-44.

J. L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Springer-Verlag, Berlin, 1971.
A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, Birkhduser Verlag, Basel, 1995.
J. L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, Springer-Verlag, Berlin, 1972.



32 0f 32

[42]
[43]

[44]
[45]

[46]

(471

[48]

[49]
[50]

[51]
[52]

[53]

[54]
[55]

[56]

(571

M. Mateos, Optimization methods for Dirichlet control problems, Optimization, 67 (2018), no. 5, pp. 585-617.

S. May, R. Rannacher and B. Vexler, Error analysis for a finite element approximation of elliptic Dirichlet boundary control
problems, SIAM J. Control Optim., 51 (2013), pp. 2585-2611.

W. McLean, Strongly Elliptic Systems and Boundary Integral Equations, Cambridge University Press, 2000.

D. Meidner and B. Vexler, Optimal error estimates for fully discrete Galerkin approximations of semilinear parabolic
equations, ESAIM: M2AN, DOI: 10.1051/m2an/2018040

G. Of, T. X. Phan and O. Steinbach, An energy space finite element approach for elliptic Dirichlet boundary control
problems, Numer. Math., 129 (2015), pp. 723-748.

R. Rannacher and R. Scott, Some optimal error estimates for piecewise linear finite element approximations, Math. Comp.,
38 (1982), pp. 437-445.

R. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satistying boundary conditions, Math. Comp.,
54 (1990), pp. 483-493.

E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, New Jersey, 1970.

Z. Tan, W. Gong and N. Yan, Overlapping domain decomposition preconditioners for unconstrained elliptic optimal control
problems, Int. J. Numer. Anal. Model., 14 (2017), no. 4-5, pp. 550-570.

L. Tartar, An Introduction to Sobolev Spaces and Interpolation Spaces, Springer-Verlag, Berlin, Heidelberg, 2007.

V. Thomée, Galerkin Finite Element Methods for Parabolic Problems, 2nd ed., Springer Series in Computational Mathe-
matics, vol. 25, Springer-Verlag, Berlin, 2006.

H. Triebel. Interpolation Theory, Function Spaces, Differential Operators. North-Holland, Amsterdam-New York-Oxford,
1978.

H. Triebel. Theory of Function Spaces II. Monographs in Mathematics 84, Birkhduser Verlag, Basel, 1992.

B. Vexler, Finite element approximation for elliptic Dirichlet optimal control problems, Numer. Funct. Anal. Optim., 28
(2007), pp. 957-973.

P. Weidemaier, Maximal regularity for parabolic equations with inhomogeneous boundary conditions in Sobolev spaces
with mixed Ly-norm, Electron. Res. Announc. Amer. Math. Soc., 8 (2002), pp. 47-51.

N. Kalton, S. Mayboroda, and M. Mitrea, Interpolation of Hardy-Sobolev-Besov-Triebel-Lizorkin spaces and applications
to problems in partial differential equations. Interpolation theory and applications, pp. 121-177, Contemp. Math.,
445, Amer. Math. Soc., Providence, RI, 2007.





