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The parabolic Dirichlet boundary control problem and its finite element discretization are considered
in convex polygonal and polyhedral domains. We improve the existing results on the regularity of the
solutions by establishing and utilizing the maximal Lp-regularity of parabolic equations under inho-
mogeneous Dirichlet boundary conditions. Based on the proved regularity of the solutions, we prove
O(h1−1/q0−ε ) convergence for the semi-discrete finite element solutions for some q0 > 2, with q0 de-
pending on the maximal interior angle at the corners and edges of the domain and ε being a positive
number that can be arbitrarily small.
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1. Introduction

This article is concerned with regularity analysis and numerical approximation of the following Dirichlet
boundary control problem

min
u∈Uad

J(y,u) =
1
2
‖y− yd‖2

L2(0,T ;L2(Ω))+
α

2
‖u‖2

L2(0,T ;L2(Γ )) (1.1)

governed by a parabolic equation 
∂ty−∆y = f in Ω × (0,T ],

y = u on Γ × (0,T ],
y(0) = 0 in Ω ,

(1.2)

where Ω ⊂ Rd , d ∈ {2,3} is a convex polygonal or polyhedral domain with boundary Γ = ∂Ω , f and
yd are given functions, α and T > 0 are given constants, and

Uad := {u ∈ L2(0,T ;L2(Γ )) : a6 u(x, t)6 b a.e. (x, t) ∈ Γ × (0,T )} (1.3)
is the admissible control set with pointwise constraints, with given constants a < b.

The Dirichlet boundary control problem is well-known to be challenging due to the variational dif-
ficulty, namely, the Dirichlet boundary conditions do not directly enter the variational setting. Analysis
for numerical approximation of the Dirichlet boundary control problem is delicate because of the low
regularity of solutions and the involvement of the normal derivative of the adjoint state in the first order
optimality condition.
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A priori error estimate for elliptic Dirichlet boundary control problems was first considered in [14],
where convergence of O(h

1
2 ) was proved for numerical solutions in convex polygonal domains. The

order of convergence was improved to O(h1−1/q0−ε) in [10], where q0 = 2ω

2ω−π
and ε can be arbitrar-

ily small, with ω denoting the maximal interior angle of the domain. Without the pointwise control
constraints, optimal-order error estimate was derived in [43] for both the control and state. Higher-
order convergence was proved in [12] for problems in smooth domains based on the superconvergence
properties of regular triangulation. In [19] the authors used a mixed finite element method for approxi-
mating the elliptic Dirichlet boundary control problem to alleviate the variational difficulty, and proved
O(h1−1/q0−ε)-convergence for the corresponding numerical solutions. All the results mentioned above
are based on the concept of very weak solutions by choosing L2(Γ ) as the control space. A finite di-
mensional Dirichlet boundary control problem with boundary condition in energy norm was studied
in [55]. Approximation of the elliptic Dirichlet boundary control problem in the energy space setting by
using H

1
2 (Γ ) as the control space was considered in [46]. We also refer to [8] for a Robin penalization

method for the Dirichlet boundary control problem. For recent results on the regularity of solutions and
numerical approximations for elliptic Dirichlet boundary control we refer to [2], [42] and the references
cited therein. In the recent work [3], improved error estimates O(hs) for the control variable under the
L2 norm were derived on general polygonal domains (possibly nonconvex), with s < min(1,π/ω−1/2)
for general mesh and s < min(3/2,π/ω−1/2) for superconvergence mesh.

For the parabolic Dirichlet control problem (1.1)-(1.2), well-posedness was proved in [29], where a
semismooth Newton method was proposed for solving the problem. A Robin penalization approach was
proposed in [5]. However, in contrast to the well developed theories for the elliptic Dirichlet boundary
control problem, there are few error analysis for numerical approximation of the parabolic Dirichlet
boundary control problem. We are only aware of [18], where O(h

1
2 )-convergence was proved for the

finite element solutions and O(τ
1
4 )-convergence was proved for time discretization. Clearly, the spa-

tial order of convergence is not optimal in view of the error estimate in [10] for the elliptic Dirichlet
boundary control problem. Related error estimates for parabolic optimal control problems with point-
wise constraints were considered in [13, 31, 33], we also refer to [23, 24, 50] for numerical methods for
optimal control problems. The objective of this paper is to improve the order of convergence of finite
element solutions to O(h1−1/q0−ε), by presenting more delicate regularity and numerical analysis for the
parabolic Dirichlet control problem through utilizing the continuous and discrete versions of maximal
Lp-regularity theory of parabolic equations.

Maximal Lp-regularity and its discrete analogues are important mathematical tools for numerical
analysis of nonlinear parabolic equations [1, 30, 45]. For example, the discrete maximal Lp-regularity
established in [34] can be used for parabolic optimal control problems with pointwise constraints. How-
ever, the existing results for discrete maximal Lp-regularity of finite element solutions [16, 26–28, 34,
36–38] all focused on zero Dirichlet and Neumann boundary conditions and thus cannot be used for the
parabolic Dirichlet optimal control problem, in which the control variable on the boundary is nonzero.
In this paper, we establish several maximal Lp-regularity results for parabolic equations and its finite
element discretization under inhomogeneous Dirichlet boundary conditions in terms of the Sobolev–
Slobodeckij and Bessel potential spaces, and then apply the established results to study the regularity
and numerical approximation of the parabolic Dirichlet boundary control problem (1.1)-(1.2).

The rest of this paper is organized as follows. In section 2 we present the notations and main results
of this paper. In section 3 we derive the maximal Lp-regularity of the forward problem. In section 4 we
further improve the existing regularity result for the parabolic Dirichlet boundary control problem by
using the maximal Lp-regularity results established in section 3. In section 5 we present error analysis
for a semi-discrete finite element approximation to the parabolic Dirichlet boundary control based on
the regularity of solutions proved in section 4.
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2. Notations and main results

2.1 Notations

Let Ω ⊂ Rd , d ∈ {2,3} be a convex polygonal or polyhedral domain with boundary Γ = ∂Ω . For a
nonnegative integer m and 1 6 q 6 ∞, we adopt the standard notation W m,q(Ω) for the Sobolev spaces
on Ω and denote Hm(Ω) =W m,2(Ω), Lp(Ω) =W 0,p(Ω). The inner products of L2(Ω) and L2(Γ ) are
denoted by

(v,w) :=
∫

Ω

vwdx ∀ v,w ∈ L2(Ω) and (v,w)Γ :=
∫

Γ

vwdΓ ∀ v,w ∈ L2(Γ ),

respectively. For an integer m > 0, we denote by W m,p
0 (Ω) the subspace of W m,p(Rd) consisting of

functions whose supports are contained in Ω . Then W m,p
0 (Ω) is isomorphic to the space of functions

in W m,p(Ω) whose zero extensions to Rd are in W m,p(Rd). We denote by W−m,p(Ω) the dual space of
W m,p′

0 (Ω) for 16 p < ∞, 1
p +

1
p′ = 1 and integer m> 1. For a general integer m ∈ Z, we also denote by

W m,p
0 (Ω) the subspace of W m,p(Rd) consisting of functions whose supports are contained in Ω .

For 1 6 p,q 6 ∞ and a fractional number α = k+θ , with θ ∈ (0,1) and integer k ∈ Z, we denote
by Bα

p,q(Ω) the Besov space and
W α,p(Ω) = Bα

p,p(Ω) (2.1)
the Sobolev–Slobodeckij space. The Besov space coincides with the real interpolation space between
two Sobolev spaces (cf. [20]), i.e.,

Bα
p,q(Ω) = (W k,p(Ω),W k+1,p(Ω))θ ,q. (2.2)

On the boundary Γ , the Sobolev–Slobodeckij space W α,p(Γ ), 0 6 α 6 1 and 1 < p < ∞, is defined
in the usual way locally in terms of a graph function of the boundary, see [17, Definition 1.3.3.2]. For
−16 α < 0 and 1 < p < ∞, we simply define W α,p(Γ ) as the dual of W−α,p′(Γ ), with 1

p +
1
p′ = 1.

Let B̊α
p,q(Ω) denote the subspace of Bα

p,q(Rd) consisting of functions whose supports are contained
in Ω , and denote W α,p

0 (Ω) = B̊α
p,p(Ω). Then

W α,p
0 (Ω) = (Lp(Ω),W 1,p

0 (Ω))α,p, for α ∈ (0,1).

For α ∈ (0,1) and 1
p < α < 1, the space W α,p

0 (Ω) agrees with the subspace of functions in W α,p(Ω)

with zero traces on the boundary (cf. [20, Proposition 1.25]). For − 1
p′ < α < 1

p with 1
p′ +

1
p = 1, there

holds W α,p
0 (Ω) =W α,p(Ω).

For a Banach space X and a nonnegative integer k, we define W k,p(0,T ;X) to be the space of func-
tions f : (0,T )→ X such that

‖ f‖W k,p(0,T ;X) :=
(∫ T

0

k

∑
`=0
‖∂ `

t f (·, t)‖p
X dt
) 1

p

< ∞. (2.3)

Throughout this paper, we denote by q0 ∈ (2,∞] the supremum of q > 2 such that the W 2,q elliptic
regularity holds for all q ∈ (1,q0). Namely, for q ∈ (1,q0), the solution v ∈ H1

0 (Ω) of the Poisson
equation

∆v = g (2.4)
satisfies

‖v‖W 2,q(Ω) 6C‖g‖Lq(Ω), ∀g ∈ L∞(Ω), (2.5)

where C is a positive constant, which may depend on q and Ω . In the case d = 2, we have q0 =
2

2−π/ω

for ω ∈ (π

2 ,π) and q0 = ∞ for ω ∈ (0, π

2 ], where ω is the maximal interior angle of the polygon;
see [17, Theorem 4.4.3.7]. In the case d = 3, q0 has more complicated expressions depending on interior
angles of both edges and corners of the polyhedron; see [11, Corollary 3.9 and Section 4.c].

Besides the Sobolev–Slobodeckij space W α,p(Ω), we also need the complex interpolation spaces
(cf. [6]) between two Sobolev spaces (called Bessel potential spaces), i.e., for 1 < p < ∞ and γ ∈ (0,1)

Ḣ2γ,p(Ω) := (Lp(Ω),W 1,p
0 (Ω)∩W 2,p(Ω))[γ] (2.6)
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with Ḣ0,p(Ω) := Lp(Ω) and Ḣ2,p(Ω) := W 1,p
0 (Ω)∩W 2,p(Ω). The dual of Ḣ2γ,p(Ω) is denoted by

Ḣ−2γ,p′(Ω).
By using (2.5) and a density argument, i.e. choosing a sequence of functions gn ∈ L∞(Ω) to ap-

proximate a function g ∈ Lp(Ω), the operator (−∆)−1 : Lp(Ω)→W 2,p(Ω)∩W 1,p
0 (Ω) can be well

defined for p ∈ (1,q0). Therefore, for p ∈ (1,q0), −∆ can be viewed as a positive operator with domain
D(−∆) =W 2,p(Ω)∩W 1,p

0 (Ω). The fractional powers of −∆ can be defined; see [53, Section 1.15].
By [4, Theorem 3.9.5], there holds ‖(−∆)is‖Lp(Ω)→Lp(Ω) 6C(1+ s2)e

π
2 |s| for s ∈R. This bounded-

ness of (−∆)is together with [53, Theorem in Section 1.15.3] imply that the domain of (−∆)γ on Lp(Ω)
is the complex interpolation space

D((−∆)γ) = (Lp(Ω),D(−∆))[γ] for γ ∈ [0,1] and 1 < p < ∞. (2.7)

In particular, for p∈ (1,q0) there holds D(−∆) =W 1,p
0 (Ω)∩W 2,p(Ω). In this case, in view of (2.6) and

(2.7), the domain and range of (−∆)γ are Ḣ2γ,p(Ω) and Lp(Ω), respectively; therefore, v ∈ Ḣ2γ,p(Ω)
is equivalent to v = (−∆)−γ w for some w ∈ Lp(Ω). By the self-adjointness of −∆ and duality between
Ḣ2γ,p(Ω) and Ḣ−2γ,p′(Ω), v ∈ Lp′(Ω) is equivalent to v = (−∆)−γ w for some w ∈ H−2γ,p′(Ω).

Since (−∆)γ : Ḣ2γ,p(Ω)→ Lp(Ω) for all p ∈ (1,q0), by the self-adjointness of (−∆)γ and du-
ality between Ḣ2γ,p(Ω) and Ḣ−2γ,p′(Ω), the operator (−∆)γ can be extended to (−∆)γ : Lp′(Ω)→
Ḣ−2γ,p′(Ω). Then, by the complex interpolation method (cf. [6]), the operator (−∆)γ can be extended
to (−∆)γ : Ḣs,p(Ω)→ Ḣs−2γ,p(Ω) for 0 6 s 6 2γ . Similarly, (−∆)−γ : Ḣs−2γ,p(Ω)→ Ḣs,p(Ω) for
06 s6 2γ . These domains and ranges are used in the rest of the paper without further mention.

2.2 Regularity of the solutions

The very weak form of (1.2) is to find y ∈ L2(0,T ;L2(Ω)) such that

−
∫ T

0

∫
Ω

y(∂tϕ +∆ϕ)dxdt =
∫ T

0

∫
Ω

f ϕdxdt−
∫ T

0

∫
Γ

u∂nnnϕdsdt (2.8)

for all ϕ ∈ L2(0,T ;H2(Ω)∩H1
0 (Ω))∩H1(0,T ;L2(Ω)) with ϕ(·,T ) = 0, where ∂nnnϕ = ∇ϕ · nnn is the

normal derivative of w on the boundary Γ , with nnn denoting the unit outward normal on Γ . For simplicity,
we denote by y = y[u] the solution of (2.8).

The problem (1.1)-(1.2) can be formulated as follows:
min J(y,u) =

1
2
‖y− yd‖2

L2(0,T ;L2(Ω))+
α

2
‖u‖2

L2(0,T ;L2(Γ ))

over (y,u) ∈ L2(0,T ;L2(Ω))×L2(0,T ;L2(Γ ))

subject to (2.8) and u ∈Uad .

(2.9)

The existence and uniqueness of solutions for problem (2.9) and the corresponding first-order optimality
conditions were shown in [29]. Although the domain is assumed to be smooth in [29], the proof of
existence, uniqueness and regularity results can be extended to convex polygonal or polyhedral domains.
In particular, for any given

yd ∈ L2(0,T ;L2(Ω)), f ∈ L2(0,T ;H−1(Ω)),

the optimal control problem (2.9) admits a unique solution (y,u) with the following regularity:

y ∈ L2(0,T ;H1(Ω)) and u ∈ L2(0,T ;H
1
2 (Γ )). (2.10)

Moreover, there exists an adjoint state
z ∈ L2(0,T ;H2(Ω)∩H1

0 (Ω))∩H1(0,T ;L2(Ω)) (2.11)
such that 

−∂tz−∆z = y− yd in Ω × [0,T ),
z = 0 on Γ × [0,T ),

z(T ) = 0 in Ω

(2.12)
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and ∫ T

0

∫
Ω

(y− yd)(y[v]− y)dxdt +
∫ T

0

∫
Γ

αu(v−u)dsdt > 0, ∀ v ∈Uad (2.13)

or ∫ T

0

∫
Γ

(αu−∂nnnz)(v−u)dsdt > 0, ∀ v ∈Uad , (2.14)

where y[v] ∈ L2(0,T ;L2(Ω)) is the solution of (2.8) with u replaced by v. Here the condition (2.14) is
equivalent to

u(x, t) = PUad (α
−1

∂nnnz(x, t)), (2.15)
where PUad is the projection operator onto admissible control set Uad .

The first main result of this paper is the following theorem, which improves the existing regularity
results (2.10)-(2.11).

THEOREM 2.1 Let yd ∈ Lq(0,T ;Lq(Ω)) and f ∈ Lq(0,T ;W−1,q(Ω)) for some q ∈ [2,q0), where q0 is
defined in section 2.1. Then the solution of optimal control problem (2.9)-(2.13) satisfies

u ∈ Lq(0,T ;W 1− 1
q ,q(Γ ))∩W

1
2

(
1− 1

q

)
,q
(0,T ;Lq(Γ )), (2.16)

y ∈ L2(0,T ;W 1,q(Ω)), (2.17)

z ∈W 1,q(0,T ;Lq(Ω))∩Lq(0,T ;W 2,q(Ω)∩W 1,q
0 (Ω)). (2.18)

REMARK 2.1 The regularity of y is L2(0,T ;W 1,q(Ω)) instead of Lq(0,T ;W 1,q(Ω)). This is due to the
possible incompatibility between the boundary value u and the initial data y(0). In fact, the following
improved regularity result will be proved in the proof of Theorem 2.1.

y ∈ Lp(0,T ;W 1,q(Ω)), if 1 < p6 q and 2q
2q−1 < p < 2q

q−1 .

The proof of Theorem 2.1 is presented in section 4. Clearly, in the case p = q = 2, Theorem 2.1
implies the existing regularity results (2.10)-(2.11). Based on the regularity in Theorem 2.1, we further
investigate the convergence rates of the semi-discrete finite element method below.

2.3 Semi-discrete finite element method

Let Sh denote the finite element subspace of H1(Ω) consisting of piecewise linear polynomials subject
to a quasi-uniform triangulation of Ω , and let S̊h = Sh∩H1

0 (Ω). We denote by Sh(Γ ) the restriction of
Sh to the boundary Γ , namely, the space of piecewise linear polynomials on the boundary Γ .

Let Ph : L2(Ω)→ S̊h denote the L2(Ω) orthogonal projection onto S̊h, defined by
(v−Phv,wh) = 0, ∀wh ∈ S̊h, ∀v ∈ L2(Ω).

Similarly, let P̃h : L2(Γ )→ Sh(Γ ) denote the L2(Γ ) orthogonal projection onto Sh(Γ ), defined by
(v− P̃hv,wh)Γ = 0, ∀wh ∈ Sh(Γ ), ∀v ∈ L2(Γ ).

For given wh(t) ∈ Sh(Γ ), t ∈ [0,T ], the semi-discrete finite element approximation of (1.2) reads:
find yh[wh] ∈ Sh, t ∈ [0,T ], such that

(∂tyh[wh],vh)+(∇yh[wh],∇vh) = ( f ,vh) ∀vh ∈ S̊h, ∀ t ∈ (0,T ],
yh[wh] = wh on Γ × (0,T ],
yh[wh](0) = 0 in Ω .

(2.19)

Then the variational discretization approach [23] for the semi-discrete finite element approximation of
(1.1)-(1.2) reads:

min
uh∈Uad ,yh∈L2(0,T ;Sh)

Jh(yh,uh) =
1
2
‖yh− yd‖2

L2(0,T ;L2(Ω))+
α

2
‖uh‖2

L2(0,T ;L2(Γ )),

subject to yh = yh[P̃huh] defined by (2.19).
(2.20)

It follows that the control problem (2.20) has a unique solution (yh,uh) and that a pair (yh,uh) is the
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solution of the problem (2.20) if and only if there is an adjoint state zh ∈ L2(0,T ; S̊h) such that the triplet
(yh,zh,uh) satisfies (2.19) with wh = P̃huh as well as the following optimality conditions:

− (∂tzh,qh)+(∇zh,∇qh) = (yh− yd ,qh), ∀ qh ∈ S̊h, ∀t ∈ (0,T ],
zh = 0 on Γ × (0,T ],
zh(T ) = 0 in Ω ,

(2.21)

and ∫ T

0

∫
Ω

(yh− yd)(yh[P̃hv]− yh)dxdt +α

∫ T

0

∫
Γ

uh(v−uh)dsdt > 0, ∀ v ∈Uad . (2.22)

In order to derive an expression from (2.22) in the analogous form of (2.15), we have to define a
discrete normal derivative ∂ h

nnn zh for the zh ∈ Sh. To this end, we define the discrete Laplacian ∆h : Sh→ S̊h
via duality by

(∆hvh,ζh) =−(∇vh,∇ζh), ∀ζh ∈ S̊h. (2.23)

The discrete normal derivative ∂ h
nnn vh ∈ Sh(Γ ) is defined via duality by

(∂ h
nnn vh,ζh)Γ = (∆hvh, ζ̃h)+(∇vh,∇ζ̃h), ∀ζh ∈ Sh(Γ ), (2.24)

where ζ̃h ∈ Sh is any finite element extension of ζh to the interior domain. Note that in (2.23) we defined
∆hvh to be an element of S̊h ⊂ Sh. For the functions ∆hvh ∈ Sh and ζ̃h ∈ Sh, the inner product (∆hvh, ζ̃h)

in (2.24) is well defined. This definition is independent of the choice of the extension ζ̃h ∈ Sh, as for any
two extensions ζ̃h, ξ̃h ∈ Sh of ϕh ∈ Sh(Γ ) there holds

(∆hvh, ζ̃h− ξ̃h)+(∇vh,∇(ζ̃h− ξ̃h)) = 0. (2.25)
The definitions (2.23)-(2.24) and equation (2.21) imply∫

Γ

∂
h
nnn zhφhds =−(∂tzh,φh)− (yh− yd ,φh)+(∇zh,∇φh), ∀φh ∈ Sh. (2.26)

By using (2.19) and (2.26) we derive that
0 6 J′h(uh)(v−uh)

= α

∫ T

0

∫
Γ

uh(v−uh)dsdt +
∫ T

0

∫
Ω

(yh− yd)(yh[P̃hv]− yh)dxdt

= α

∫ T

0

∫
Γ

uh(v−uh)dsdt +
∫ T

0
(−(∂tzh,yh[P̃hv]− yh)+(∇(yh[P̃hv]− yh),∇zh))dt

−
∫ T

0

∫
Γ

∂
h
nnn zh(yh[P̃hv]− yh)dsdt

= α

∫ T

0

∫
Γ

uh(v−uh)dsdt−
∫ T

0

∫
Γ

∂
h
nnn zh · P̃h(v−uh)dsdt

=
∫ T

0

∫
Γ

(αuh−∂
h
nnn zh)(v−uh)dsdt

for v ∈Uad , which in turn implies
uh = PUad (α

−1
∂

h
nnn zh), (2.27)

which is analogous to the continuous case (2.15).
The second main result of this paper is the following theorem, where we improve the order of

convergence of the finite element solutions based on the regularity of the solution shown in Theorem
2.1.

THEOREM 2.2 Let yd ∈ Lq0(0,T ;Lq0(Ω)) and f ∈ Lq0(0,T ;W−1,q0(Ω)), where q0 is defined in section
2.1. Then the finite element solution given by (2.20) satisfies the following error estimate:

‖u−uh‖L2(0,T ;Lq0 (Γ ))+‖y− yh‖L2(0,T ;Lq0 (Ω))+‖z− zh‖L2(0,T ;W 1,q0 (Ω)) 6Cε h1− 1
q0
−ε

, (2.28)

where ε ∈ [0,1− 1
q0
) can be arbitrarily small (at the expense of enlarging the constant Cε ).
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The proof of Theorem 2.2 is presented in section 5.

REMARK 2.2 The constant Cε in Theorem 2.2 may depend on ε and blow up as ε → 0. If Ω is a
rectangular domain then q0 = ∞ and thus the numerical solutions have almost first-order convergence.

3. Maximal Lp-regularity of the forward problem

In this section, we establish the maximal Lp-regularity of parabolic equations under inhomogeneous
boundary conditions, which was used in section 4 to prove Theorem 2.1.

By the Hölder estimate of Green’s function of elliptic equations (cf. [22, estimate (1.4)]), the solution
v of (2.4) satisfies

|∂xiv(x)−∂yiv(y)|=
∣∣∣∣∫

Ω

(∂xiG(x,ξ )g(ξ )−∂yiG(y,ξ )g(ξ ))dξ

∣∣∣∣
6
∫

Ω

|∂xiG(x,ξ )−∂yiG(y,ξ )||g(ξ )|dξ

6
∫

Ω

C|x− y|σ (|x−ξ |−2−σ + |y−ξ |−2−σ )|g(ξ )|dξ

6C‖g‖L∞(Ω)|x− y|σ , if g ∈ L∞(Ω),

where the constant σ ∈ (0,1) depends on the domain Ω . Therefore, g ∈ L∞(Ω) implies v ∈C1+σ (Ω)
for some σ ∈ (0,1). In this case, the Dirichlet boundary condition implies

∇v = 0 at the corners and edges of Ω , (3.1)

∂nnnv = ∇v|Γ ·nnn ∈W 1−1/q,q(Γj) in each flat part Γj of Γ , (3.2)
∂nnnv = 0 at the corners and edges of Ω (within each flat part). (3.3)

The properties (3.2)-(3.3) imply ∂nnnv ∈ Π jW
1−1/q,q
0 (Γj), the space of functions f on Γ such that f ∈

W 1−1/q,q
0 (Γj) on each flat part Γj (with zero traces on the boundary of Γj). It is clear that

Π jW
s,q
0 (Γj) ↪→W s,q(Γ ) for both s = 0 and s = 1.

By the real interpolation method there holds Π jW
s,q
0 (Γj) ↪→W s,q(Γ ) for all s ∈ (0,1). Therefore ∂nnnv ∈

W 1−1/q,q(Γ ) and
‖∂nnnv‖W 1−1/q,q(Γ ) 6C∑

j
‖∂nnnv‖

W 1−1/q,q
0 (Γj)

6C‖v‖W 2,q(Ω) 6C‖g‖Lq(Ω), ∀g ∈ L∞(Ω). (3.4)

Since L∞(Ω) is dense in Lq(Ω), (2.5) and (3.4) imply, for q ∈ [2,q0), the solution of (2.4) satisfies
‖v‖W 2,q(Ω)+‖∂nnnv‖W 1−1/q,q(Γ ) 6C‖g‖Lq(Ω), ∀g ∈ Lq(Ω). (3.5)

This result will be used in the rest of this section.

3.1 Maximal Lp-regularity under inhomogeneous boundary condition

We firstly recall the maximal Lp-regularity under homogeneous boundary condition.

LEMMA 3.1 (Maximal Lp-regularity, cf. Lemma 2.1 of [37]) For 1 < p,s < ∞, the solution of
∂ty−∆y = f in Ω × (0,T ],

y = 0 on Γ × (0,T ],
y(0) = 0 in Ω

(3.6)

satisfies the following estimates:
(i) If f ∈ Lp(0,T ;Ls(Ω)) then

‖∂ty‖Lp(0,T ;Ls(Ω))+‖∆y‖Lp(0,T ;Ls(Ω)) 6C‖ f‖Lp(0,T ;Ls(Ω)).

(ii) If f ∈ Lp(0,T ;W−1,s(Ω)) then
‖∂ty‖Lp(0,T ;W−1,s(Ω))+‖y‖Lp(0,T ;W 1,s(Ω)) 6C‖ f‖Lp(0,T ;W−1,s(Ω)).
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We next consider the maximal Lp-regularity under inhomogeneous boundary conditions by applying
Lemma 3.1.

LEMMA 3.2 For f ∈ Lp(0,T ; Ḣ−(2−
1
s +ε),s(Ω)) and u ∈ Lp(0,T ;Ls(Γ )), with 1 < p < ∞, q′0 < s < ∞

and ε ∈ (0, 1
s ], the solution of (2.8) is well-defined and satisfies the following estimate:

‖∂ty‖Lp(0,T ;Ḣ−(2−
1
s +ε),s(Ω))

+‖y‖
Lp(0,T ;Ḣ

1
s −ε,s(Ω))

6C(‖ f‖
Lp(0,T ;Ḣ−(2−

1
s +ε),s(Ω))

+‖u‖Lp(0,T ;Ls(Γ ))). (3.7)

Proof. If f and u are smooth functions, then substituting ϕ =(−∆)−
1
2 (1+

1
s′+ε)

φ with φ ∈Lp′(0,T ;Ls′(Ω))

and w = (−∆)−
1
2 (1+

1
s′+ε)y into (2.8) yield

(∂tw,φ)+(∇w,∇φ) = ( f ,(−∆)−
1
2 (1+

1
s′+ε)

φ)− (u,∂nnn(−∆)−
1
2 (1+

1
s′+ε)

φ)Γ t ∈ (0,T ],

where the domain and range of (−∆)−
1
2 (1+

1
s′+ε) are Ls′(Ω) and Ḣ1+ 1

s′+ε,s′(Ω), respectively, for s′ ∈
(1,q0). Since φ ∈ Lp′(0,T ;Ls′(Ω)), it follows that v = (−∆)−

1
2 (1+

1
s′+ε)

φ ∈ Lp′(0,T ; Ḣ1+ 1
s′+ε,s′(Ω))

and therefore ∇v ∈ Lp′(0,T ; Ḣ
1
s′+ε,s′(Ω)). Consequently, the trace of ∇v onto the boundary Γ is in

Lp′(0,T ;Ls′(Γ ))
(
because ( 1

s′ + ε)s′ > 1
)
. This implies ∂nnnv = nnn ·∇v ∈ Lp′(0,T ;Ls′(Γ )). Hence, the

right hand side of the equation above is well defined.
Clearly, the linear functional ` : Lp′(0,T ;Ls′(Ω))→ R defined by

`(φ) :=
∫ T

0
(u,∂nnn(−∆)−

1
2 (1+

1
s′+ε)

φ)Γ dt

is bounded, i.e.,

|`(φ)|6C‖u‖Lp(0,T ;Ls(Γ ))‖∂nnn(−∆)−
1
2 (1+

1
s′+ε)

φ‖Lp′ (0,T ;Ls′ (Γ ))

6Cε‖u‖Lp(0,T ;Ls(Γ ))‖(−∆)−
1
2 (1+

1
s′+ε)

φ‖
Lp′ (0,T ;Ḣ

1+ 1
s′ +ε,s′

(Ω))

6Cε‖u‖Lp(0,T ;Ls(Γ ))‖φ‖Lp′ (0,T ;Ls′ (Ω))
,

where ε ∈ (0, 1
s ] can be arbitrarily small at the expense of enlarging the constant Cε . Similarly, by the

duality between Ḣ−(1+
1
s′+ε),s(Ω) and Ḣ1+ 1

s′+ε,s′(Ω), there holds∣∣∣∣∫ T

0
( f ,(−∆)−

1
2 (1+

1
s′+ε)

φ)dt
∣∣∣∣6C‖ f‖

Lp(0,T ;Ḣ
−(1+ 1

s′ +ε),s
(Ω))
‖(−∆)−

1
2 (1+

1
s′+ε)

φ‖
Lp′ (0,T ;Ḣ

1+ 1
s′ +ε,s′

(Ω))

6C‖ f‖
Lp(0,T ;Ḣ

−(1+ 1
s′ +ε),s

(Ω))
‖φ‖Lp′ (0,T ;Ls′ (Ω))

.

Therefore, there exists a function g ∈ Lp(0,T ;Ls(Ω)) such that

(g,φ) = ( f ,(−∆)−
1
2 (1+

1
s′+ε)

φ)− (u,∂nnn(−∆)−
1
2 (1+

1
s′+ε)

φ)Γ , a.e. t ∈ (0,T )
and

‖g‖Lp(0,T ;Ls(Ω)) 6C(‖ f‖
Lp(0,T ;Ḣ

−(1+ 1
s′ +ε),s

(Ω))
+‖u‖Lp(0,T ;Ls(Γ ))).

Then the maximal Lp-regularity of parabolic equation (cf. Lemma 3.1) yields
‖∂tw‖Lp(0,T ;Ls(Ω))+‖∆w‖Lp(0,T ;Ls(Ω)) 6C‖g‖Lp(0,T ;Ls(Ω))

6C(‖ f‖
Ḣ
−(1+ 1

s′ +ε),s
(Ω)

+‖u‖Lp(0,T ;Ls(Γ ))),

which implies the estimate (3.7).
Since smooth functions are dense in Lp(0,T ; Ḣ−(2−

1
s +ε),s(Ω)) and Lp(0,T ;Ls(Γ )), the estimate

(3.7) implies that the solution can be uniquely extended to the case

f ∈ Lp(0,T ; Ḣ−(2−
1
s +ε),s(Ω)) and u ∈ Lp(0,T ;Ls(Γ )).

The proof of Lemma 3.2 is complete. �
Lemma 3.2 gives very weak regularity of y because it only requires the very weak regularity u ∈



9 of 32

Lp(0,T ;Ls(Γ )). Stronger regularity of y requires certain differentiability of u and the following result
on the trace onto and lift from the boundary Γ .

LEMMA 3.3 Let 1 < s < ∞. For φ ∈ Ls(0,T ;W 2,s(Ω)∩W 1,s
0 (Ω))∩W 1,s(0,T ;Ls(Ω)), there holds

‖∂nnnφ‖
Ls(0,T ;W 1− 1

s ,s(Γ ))∩W
1
2 (1− 1

s ),s(0,T ;Ls(Γ ))
6C(‖φ‖Ls(0,T ;W 2,s(Ω))+‖φ‖W 1,s(0,T ;Ls(Ω))). (3.8)

For ϕ ∈ Ls(0,T ;W 1− 1
s ,s(Γ ))∩W

1
2 (1− 1

s ),s(0,T ;Ls(Γ )) there exists an extension ϕ̃ such that
‖ϕ̃‖

Ls(0,T ;W 1,s(Ω))∩W
1
2 ,s(0,T ;Ls(Ω))

6C‖ϕ‖
Ls(0,T ;W 1− 1

s ,s(Γ ))∩W
1
2 (1− 1

s ),s(0,T ;Ls(Γ ))
. (3.9)

Proof. By using Stein’s extension method [49, p. 181, Theorem 5], the function φ ∈Ls(0,T ;W 2,s(Ω))∩
W 1,s(0,T ;Ls(Ω)) can be extended to

φ̃ ∈ Ls(0,T ;W 2,s(Rd))∩W 1,s(0,T ;Ls(Rd)).

On a half space Rd
+ := Rd−1×R+ we note that

φ̃ ∈ Ls(0,T ;W 2,s(Rd
+))∩W 1,s(0,T ;Ls(Rd

+)) ↪→W
1
2 ,s(0,T ;W 1,s(Rd

+)),

which implies that

∂xd φ̃ ∈ Ls(0,T ;W 1,s(Rd
+))∩W

1
2 ,s(0,T ;Ls(Rd

+)) = Ls(R+;X)∩W 1,s(R+;Y ),

where X = Ls(0,T ;W 1,s(Rd−1))∩W
1
2 ,s(0,T ;Ls(Rd−1)) and Y = Ls(0,T ;Ls(Rd−1)), ∂xd φ̃ denotes the

normal derivative of a function φ̃ on the flat plane Rd−1. It was proved in [40, Proposition 1.2.10] that
Ls(R+;X)∩W 1,s(R+;Y ) ↪→ BUC(R+;(Y,X)1− 1

s ,s
),

where BUC(R+;(Y,X)1− 1
s ,s
) denotes the space of bounded uniformly continuous functions defined on

R+ with values in the real interpolation space

(Y,X)1− 1
s ,s

= Ls(0,T ;W 1− 1
s ,s(Rd−1))∩W

1
2 (1−

1
s ),s(0,T ;Ls(Rd−1)).

Therefore, the trace of ∂xd φ̃ on the hyperplane ∂Rd
+ = Rd−1 is in

Ls(0,T ;W 1− 1
s ,s(Rd−1))∩W

1
2 (1−

1
s ),s(0,T ;Ls(Rd−1)).

The result above implies that on each face Γj of the boundary Γ we have ∂nnnφ̃ ∈Ls(0,T ;W 1− 1
s ,s(Γj))∩

W
1
2 (1−

1
s ),s(0,T ;Ls(Γj)) and

‖∂nnnφ̃‖
Ls(0,T ;W 1− 1

s ,s(Γj))∩W
1
2 (1− 1

s ),s(0,T ;Ls(Γj))
6C(‖φ̃‖Lp(0,T ;W 2,s(Rd))+‖φ̃‖W 1,p(0,T ;Ls(Rd))).

Since φ ∈ Ls(0,T ;W 2,s(Ω)∩W 1,s
0 (Ω)), it follows that φ is the solution of ∆φ = f under the ho-

mogeneous Dirichlet boundary condition for some f ∈ Ls(0,T ;Ls(Ω)). Then (3.3) and (3.4) imply
∂nnnφ ∈W 1−1/s,s(Γ ) for a.e. t ∈ (0,T ) and correspondingly

∂nnnφ ∈ Ls(0,T ;W 1− 1
s ,s(Γ ))∩W

1
2 (1−

1
s ),s(0,T ;Ls(Γ )).

This proves (3.8).
Since Ω is a bounded Lipschitz domain, through a Lipschitz continuous transform we can locally

transform the boundary Γ to a flat plane Rd−1 and locally transform the domain Ω to a half ball con-
tained in the half space Rd

+. If

ϕ ∈ Ls(0,T ;W 1− 1
s ,s(Rd−1))∩W

1
2 (1− 1

s ),s(0,T ;Ls(Rd−1)) = (Y,X)1− 1
s ,s
,

then [40, Proposition 1.2.10] says that any function in (Y,X)1− 1
s ,s

must be the trace of a function

φ̃ ∈ Ls(R+;X)∩W 1,s(R+;Y ) = Ls(0,T ;W 1,s(Rd
+))∩W

1
2 ,s(0,T ;Ls(Rd

+)).

Transforming back to the original coordinates system and denoting by ϕ̃ the transformation of φ̃ , we
obtain that ϕ is the trace of ϕ̃ ∈ Ls(0,T ;W 1,s(Ω))∩W

1
2 ,s(0,T ;Ls(Ω)). This proves (3.9). �

With the above preparation we have the following proposition, which extends Lemma 3.1 to inho-
mogeneous Dirichlet boundary conditions.
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PROPOSITION 3.1 Let 1 < s < ∞ and 2s
2s−1 < p < min(s, 2s

s−1 ). Then for

f ∈ Lp(0,T ;W−1,s(Ω)) and u ∈ Ls(0,T ;W 1− 1
s ,s(Γ ))∩W

1
2 (1− 1

s ),s(0,T ;Ls(Γ )),

the weak solution of (1.2) satisfies the following estimate:
‖y‖Lp(0,T ;W 1,s(Ω))

6C
(
‖ f‖Lp(0,T ;W−1,s(Ω))+‖u‖

Ls(0,T ;W 1− 1
s ,s(Γ ))∩W

1
2 (1− 1

s ),s(0,T ;Ls(Γ ))

)
. (3.10)

Proof. First, we prove the existence of a function w̃ which extends u from the boundary Γ to the
domain Ω such that

w̃ ∈ Lp(R+;W 1,s(Ω))∩W
1
2 ,p(R+;Ls(Ω)), w̃|t=0 = 0 and w̃|Γ = u|Γ . (3.11)

In fact, for u ∈ Ls(0,T ;W 1− 1
s ,s(Γ ))∩W

1
2 (1− 1

s ),s(0,T ;Ls(Γ )), Lemma 3.3 implies the existence of an
extension ũ such that ũ|Γ = u on Γ and

‖ũ‖Ls(0,T ;W 1,s(Ω))+‖ũ‖W 1
2 ,s(0,T ;Ls(Ω))

6C‖u‖
Ls(0,T ;W 1− 1

s ,s(Γ ))∩W
1
2 (1− 1

s ),s(0,T ;Ls(Γ ))
. (3.12)

The function ũ can be further boundedly extended to t ∈ R+ (also denoted by ũ), i.e.,

ũ ∈ Ls(R+;W 1,s(Ω))∩W
1
2 ,s(R+;Ls(Ω)) ↪→C(R+;W 1− 2

s−2ε,s(Ω)).

Such an extension can be made by a reflection with respect to t = T and a multiplication with a smooth
cut-off function χ such that χ = 1 for t ∈ [0,T ] and χ = 0 for t > 2T . However, this extension ũ may
not satisfy ũ|t=0 = 0. The estimate above implies

ũ ∈ Ls(R+;W 1,s(Ω))∩W
1
2 ,s(R+;Ls(Ω))

↪→W
1
s +ε,s(R+;(Ls(Ω),W 1,s(Ω))1− 2

s−2ε,s) (real interpolation)

↪→C(R+;(Ls(Ω),W 1,s(Ω))1− 2
s−2ε,s)

=C(R+;W 1− 2
s−2ε,s(Ω)). (3.13)

For any 2s
2s−1 < p < min(s, 2s

s−1 ), we have − 1
s′ < 1− 2

p < 1
s and thus (see section 2.1)

W 1− 2
p ,s(Ω) =W

1− 2
p ,s

0 (Ω). (3.14)

For sufficiently small ε we still have − 1
s′ < 1− 2

p + ε < 1
s and 1− 2

p < 1− 2
s −2ε . Therefore,

ũ|t=0 ∈W 1− 2
s−2ε,s(Ω) = B

1− 2
s−2ε

s,s (Ω) ↪→ B
1− 2

p
s,p (Ω)

= (W 1− 2
p−ε,s(Ω),W 1− 2

p+ε,s(Ω)) 1
2 ,p

= (W
1− 2

p−ε,s
0 (Ω),W

1− 2
p+ε,s

0 (Ω)) 1
2 ,p

(use (3.14) here)

= (W−1,s
0 (Ω),W 1,s

0 (Ω))1− 1
p ,p

(reiteration of interpolation spaces [6, Theorem 3.5.3])

↪→ (W−1,s(Ω),W 1,s
0 (Ω))1− 1

p ,p
, (since W−1,s

0 (Ω) ↪→W−1,s(Ω))

where W−1,s
0 (Ω) denotes the subspace of W−1,s(Rd) with support on Ω . The above embedding result

implies the existence of

ṽ ∈ Lp(R+;W 1,s
0 (Ω))∩W 1,p(R+;W−1,s(Ω)) ↪→ Lp(R+;W 1,s

0 (Ω))∩W
1
2 ,p(R+;Ls(Ω))

such that ṽ|t=0 = ũ|t=0 (cf. [40, Proposition 1.2.10]), satisfying
‖ṽ‖

Lp(R+;W 1,s
0 (Ω))∩W

1
2 ,p(R+;Ls(Ω))

6C‖ũ|t=0‖
B

1− 2
p

s,p (Ω)
6C‖ũ|t=0‖W 1− 2

s −2ε,s(Ω)

6C(‖ũ‖Ls(R+;W 1,s(Ω))+‖ũ‖W 1
2 ,s(R+;Ls(Ω))

)

6C‖u‖
Ls(0,T ;W 1− 1

s ,s(Γ ))∩W
1
2 (1− 1

s ),s(0,T ;Ls(Γ ))
.
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Thus w̃ = ũ− ṽ satisfies (3.11) and
‖w̃‖

Lp(R+;W 1,s(Ω))∩W
1
2 ,p(R+;Ls(Ω))

6C‖u‖
Ls(0,T ;W 1− 1

s ,s(Γ ))∩W
1
2 (1− 1

s ),s(0,T ;Ls(Γ ))
.

Second, we note that y− w̃ is the solution of
∂t(y− w̃)−∆(y− w̃) = f −∂t w̃+∆ w̃ in Ω × (0,T ],

y− w̃ = 0 on Γ × (0,T ],
y(0)− w̃(0) = 0 in Ω ,

(3.15)

satisfying the weak formulation∫ T

0
(y− w̃,−∂tϕ−∆ϕ)dt =

∫ T

0
( f ,ϕ)dt−

∫ T

0
(∂t w̃,ϕ)dt−

∫ T

0
(∇w̃,∇ϕ)dt, ∀ϕ ∈ Z, (3.16)

with Z = {ϕ ∈Lp′(0,T ;W 1,s′
0 (Ω))∩W 1,p′(0,T ;W−1,s′(Ω)) : ϕ|t=T = 0}. For any φ ∈Lp′(0,T ;W−1,s′(Ω))

there exists ϕ ∈ Z being the solution of the backward heat equation
−∂tϕ−∆ϕ = φ in Ω × (0,T ],

ϕ = 0 on Γ × (0,T ],
ϕ(T ) = 0 in Ω

(3.17)

satisfying (cf. Lemma 3.1)
‖ϕ‖

Lp′ (0,T ;W 1,s′
0 (Ω))∩W 1,p′ (0,T ;W−1,s′ (Ω))

6C‖φ‖Lp′ (0,T ;W−1,s′ (Ω))
. (3.18)

It follows that∣∣∣∣∫ T

0
(y− w̃,φ)dt

∣∣∣∣
=

∣∣∣∣∫ T

0
( f ,ϕ)dt−

∫ T

0
(∂t w̃,ϕ)dt−

∫ T

0
(∇w̃,∇ϕ)dt

∣∣∣∣
6C(‖ f‖Lp(0,T ;W−1,s(Ω))+‖w̃‖Lp(0,T ;W 1,s

0 (Ω))
)‖ϕ‖

Lp′ (0,T ;W 1,s′
0 (Ω))

+C‖∂t w̃‖
W−

1
2 ,p(0,T ;Ls(Ω))

‖ϕ‖
W

1
2 ,p′ (0,T ;Ls′ (Ω))

6C(‖ f‖Lp(0,T ;W−1,s(Ω))+‖w̃‖Lp(0,T ;W 1,s
0 (Ω))

)‖ϕ‖
Lp′ (0,T ;W 1,s′

0 (Ω))

+C‖w̃‖
W

1
2 ,p(0,T ;Ls(Ω))

‖ϕ‖
W

1
2 ,p′ (0,T ;Ls′ (Ω))

6C(‖ f‖Lp(0,T ;W−1,s(Ω))+‖w̃‖Lp(0,T ;W 1,s
0 (Ω))∩W

1
2 ,p(0,T ;Ls(Ω))

)‖φ‖Lp′ (0,T ;W−1,s′ (Ω))
.

By the duality argument we obtain
‖y− w̃‖Lp(0,T ;W 1,s

0 (Ω))
6C(‖ f‖Lp(0,T ;W−1,s(Ω)+‖w̃‖Lp(0,T ;W 1,s(Ω))∩W

1
2 ,p(0,T ;Ls(Ω))

).

Therefore,
‖y‖Lp(0,T ;W 1,s(Ω)) 6C(‖ f‖Lp(0,T ;W−1,s(Ω)+‖w̃‖Lp(0,T ;W 1,s(Ω))∩W

1
2 ,p(0,T ;Ls(Ω))

)

6C(‖ f‖Lp(0,T ;W−1,s(Ω))+‖u‖
Ls(0,T ;W 1− 1

s ,s(Γ ))∩W
1
2 (1− 1

s ),s(0,T ;Ls(Γ ))
).

The proof of Proposition 3.1 is complete. �

3.2 Maximal Lp-regularity of finite element solutions

Besides the maximal Lp-regularity of parabolic equations, we also need discrete versions of maximal
Lp-regularity for finite element solutions of parabolic equations. The following discrete maximal Lp-
regularity under homogeneous Dirichlet boundary condition is known.

LEMMA 3.4 (cf. Theorem 1.1 of [37]) For 1 < p,s < ∞, the finite element solution φh(t)∈ S̊h, t ∈ [0,T ],
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of the equation {
(∂tφh(t),vh)+(∇φh(t),∇vh) = ( f (t),vh) ∀vh ∈ S̊h, ∀ t ∈ (0,T ],
φh(0) = 0,

satisfies the following estimates:
(i) If f ∈ Lp(0,T ;W−1,s(Ω)) then

‖∂tφh‖Lp(0,T ;W−1,s(Ω))+‖φh‖Lp(0,T ;W 1,s(Ω)) 6 ‖ f‖Lp(0,T ;W−1,s(Ω)).

(ii) If f ∈ Lp(0,T ;Ls(Ω)) then
‖∂tφh‖Lp(0,T ;Ls(Ω))+‖∆hφh‖Lp(0,T ;Ls(Ω)) 6 ‖ f‖Lp(0,T ;Ls(Ω)).

REMARK 3.1 In [37, Theorem 1.1] the estimate of ‖φh‖Lp(0,T ;W 1,s(Ω)) in Lemma 3.4 (i) was proved.
Then the estimate of ‖∂tφh‖Lp(0,T ;W−1,s(Ω)) can be obtained by using the finite element equation, i.e.,∣∣∣∣∫ T

0
(∂tφh,vh)dt

∣∣∣∣= ∣∣∣∣−∫ T

0
(∇φh,∇vh)dt +

∫ T

0
( f ,vh)dt

∣∣∣∣
6C(‖φh‖Lp(0,T ;W 1,s(Ω))+‖ f‖Lp(0,T ;W−1,s(Ω)))‖vh‖Lp′ (0,T ;W 1,s(Ω))

,

which holds for all vh ∈ S̊h. By duality we have
‖∂tφh‖Lp(0,T ;W−1,s(Ω)) 6C(‖φh‖Lp(0,T ;W 1,s(Ω))+‖ f‖Lp(0,T ;W−1,s(Ω)))

6C‖ f‖Lp(0,T ;W−1,s(Ω)).

By using the definition (2.24) of the discrete normal derivative, for any given ϕh ∈ Sh(Γ ), the solu-
tion yh ∈ Sh of the finite element problem (under inhomogeneous boundary condition)

(∂tyh,vh)+(∇yh,∇vh) = ( f ,vh), ∀ vh ∈ S̊h, ∀ t ∈ (0,T ],
yh = ϕh on Γ ,

yh = 0 in Ω ,

(3.19)

can be equivalently written as
(∂tyh,vh)− (yh,∆hvh) = ( f ,vh)− (ϕh,∂

h
nnn vh)Γ , ∀ vh ∈ S̊h, t ∈ (0,T ]. (3.20)

This is analogous to the very weak formulation (2.8) of the continuous problem (1.2).
In order to consider maximal Lp-regularity of finite element solutions under inhomogeneous bound-

ary condition, we need the following lemma on the stability of the Ritz projection.

LEMMA 3.5 Let Rh : H1
0 (Ω)→ S̊h denote the Ritz projection, defined by

(∇(φ −Rhφ),∇vh) = 0, ∀vh ∈ S̊h, ∀φ ∈ H1
0 (Ω).

Then for θ ∈ (0,1) and s > θ−1 the following stability estimate holds:

‖Rhφ‖W θ ,s
0 (Ω)

6C| lnh|‖φ‖W θ ,s
0 (Ω)

, ∀φ ∈W θ ,s
0 (Ω).

For θ ∈ [0,1] and s ∈ (1,∞), the following stability estimate holds:

‖Phφ‖W θ ,s
0 (Ω)

6C‖φ‖W θ ,s
0 (Ω)

, ∀φ ∈W θ ,s
0 (Ω).

Proof. It is known that the Ritz projection is bounded on L∞(Ω) and W 1,∞(Ω), i.e., (cf. [22, 32])
‖Rhφ‖L∞(Ω) 6C| lnh|‖φ‖L∞(Ω), ∀φ ∈ L∞(Ω)∩H1

0 (Ω),

‖Rhφ‖W 1,∞(Ω) 6C‖φ‖W 1,∞(Ω), ∀φ ∈W 1,∞(Ω)∩H1
0 (Ω).

Via a duality argument, the last inequality implies
‖Rhφ‖W 1,p(Ω) 6C‖φ‖W 1,p(Ω), ∀φ ∈W 1,p(Ω)∩H1

0 (Ω), 1 < p < ∞.

Then the Ritz projection can be extended to C0(Ω) and W 1,p
0 (Ω), satisfying

‖Rhφ‖C0(Ω) 6C| lnh|‖φ‖C0(Ω), ∀φ ∈C0(Ω), (3.21)

‖Rhφ‖W 1,p
0 (Ω)

6C‖φ‖W 1,p
0 (Ω)

, ∀φ ∈W 1,p
0 (Ω). (3.22)
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In [19, Proposition 1.6] the author shows that
B0

∞,1(Rd) ↪→C(Rd) ↪→ B0
∞,∞(Rd).

Since B̊s
p,q(Ω) is isomorphic to the subspace of B0

∞,1(Rd) consisting of functions which are zero outside
Ω , it follows that if φ ∈ B̊0

∞,1(Ω) then φ ∈ C(Rd) and φ = 0 outside Ω . This shows that B̊0
∞,1(Ω) ↪→

C0(Ω). If φ ∈C0(Ω) then φ ∈C(Rd) and φ = 0 outside Ω . Then the embedding C(Rd) ↪→ B0
∞,∞(Rd)

implies φ ∈ B0
∞,∞(Rd) and φ = 0 outside Ω , i.e., φ ∈ B̊0

∞,∞(Ω). This shows that C0(Ω) ↪→ B̊0
∞,∞(Ω).

Therefore, we have
B̊0

∞,1(Ω) ↪→C0(Ω) ↪→ B̊0
∞,∞(Ω). (3.23)

In [54, Theorem 9.4] the authors show that if min(q0,q1)< ∞ then

(B̊α0
p0,q0

(Ω), B̊α1
p1,q1

(Ω))[θ ] = B̊(1−θ)α0+θα1
p,q (Ω),

with 1−θ

p0
+ θ

p1
= 1

p and 1−θ

q0
+ θ

q1
= 1

q . Setting α0 = 0, p0 = ∞, q0 = 1 and α1 = 1, p1 = q1 = p yields

(B̊0
∞,1(Ω), B̊1

p,p(Ω))[θ ] = B̊θ

p/θ ,q(Ω) with 1− θ

p′ =
1
q

and setting α0 = 0, p0 = q0 = ∞ and α1 = 1, p1 = q1 = p yields
(B̊0

∞,∞(Ω), B̊1
p,p(Ω))[θ ] = B̊θ

p/θ ,p/θ
(Ω).

Since W 1,p
0 (Ω) = B̊1

p,p(Ω), the two embeddings above can be written as

(B̊0
∞,1(Ω),W 1,p

0 (Ω))[θ ] = B̊θ

p/θ ,q(Ω) with 1− θ

p′ =
1
q ,

(B̊0
∞,∞(Ω),W 1,p

0 (Ω)))[θ ] = B̊θ

p/θ ,p/θ
(Ω).

From (3.23) we know that C0(Ω) is intermediate between B̊0
∞,1(Ω) and B̊0

∞,∞(Ω), it follows that

B̊θ

p/θ ,q(Ω) = (B̊0
∞,1(Ω),W 1,p

0 (Ω))[θ ] ↪→ (C0(Ω),W 1,p
0 (Ω))[θ ]

↪→ (B̊0
∞,∞(Ω),W 1,p

0 (Ω))[θ ]

= B̊θ

p/θ ,p/θ
(Ω). (3.24)

The complex interpolation between (3.21) and (3.22) yields
‖Rhφ‖

(C0(Ω),W 1,p
0 (Ω))[θ ]

6C| lnh|‖φ‖
(C0(Ω),W 1,p

0 (Ω))[θ ]
. (3.25)

By using (3.24) and (3.25) we have
‖Rhφ‖B̊θ

p/θ ,q(Ω) 6C‖Rhφ‖
(C0(Ω),W 1,p

0 (Ω))[θ ]

6C| lnh|‖φ‖
(C0(Ω),W 1,p

0 (Ω))[θ ]

6C| lnh|‖φ‖B̊θ

p/θ ,p/θ
(Ω).

For any θ ∈ (0,1) and s > 1/θ , we choose θ1 < θ < θ2 with θ1+θ2
2 = θ and θ1 sufficiently close to θ

so that s > 1/θ1. For j = 1,2, setting θ = θ j and p = sθ j > 1 in the estimate above yields

‖Rhφ‖
B̊

θ j
s,q j (Ω)

6C| lnh|‖φ‖
B̊

θ j
s,s(Ω)

, with 1− θ j
p′ =

1
q j
. (3.26)

Since

(B̊θ1
s,q1

(Ω), B̊θ2
s,q2

(Ω)) 1
2 ,s

= (B̊θ1
s,s(Ω), B̊θ2

s,s(Ω)) 1
2 ,s

=W θ ,s
0 (Ω),

applying the real interpolation method to (3.26) yields
‖Rhφ‖W θ ,s

0 (Ω)
6C| lnh|‖φ‖W θ ,s

0 (Ω)
, for θ ∈ (0,1) and s > 1/θ .

This proves the estimate for Rhφ . The estimate for Phφ is easier: since Ph is bounded on both Ls(Ω)

and W 1,s
0 (Ω) for all 1 < s < ∞, which means that the estimate for Phφ holds for the two end-point cases

θ = 0 and θ = 1, it follows that (by the real interpolation method, cf. [6]) Ph is also bounded on the real
interpolation space W θ ,s

0 (Ω) for θ ∈ (0,1). �
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REMARK 3.2 We have used the characterization of B̊s
p,q(Ω) as the subspace of Bs

p,q(Rd) consisting of
functions which are zero outside Ω . This is independent of the smoothness of the boundary. We have
also cited the complex interpolation of Besov spaces in [54, Theorem 9.4], which holds for general
Lipschitz domains.

In the case φh ∈ Sh (not necessarily zero on the boundary) we have the following result.

LEMMA 3.6 For 1 < p,s < ∞, if φ ∈ Lp(0,T ;W 1,s(Ω)) and φh ∈ Lp(0,T ;Sh) satisfy the equation
(∂t(φ −φh),vh)+(∇(φ −φh),∇vh) = 0 ∀vh ∈ S̊h, ∀ t ∈ (0,T ],
φ −φh = 0 on Γ , ∀ t ∈ (0,T ],
φ(0)−φh(0) = 0 in Ω ,

(3.27)

then
‖φh‖Lp(0,T ;W 1,s(Ω)) 6Cε h−1+ 1

s +ε | lnh|‖φ‖
Lp(0,T ;W

1
s +ε,s(Ω))

, (3.28)

‖φ −φh‖Lp(0,T ;Ls(Ω))+h‖φ −φh‖Lp(0,T ;W 1,s(Ω)) 6Chk‖φ‖Lp(0,T ;W k,s(Ω)), (3.29)

where ε ∈ (0,1− 1
s ] can be arbitrarily small and k = 1,2.

Proof. Let Ĩh be the Scott-Zhang interpolation operator introduced in [48], which preserves the
boundary condition in the sense that

Ĩhφ = φ on Γ if φ |Γ ∈ Sh(Γ )

and satisfies the following stability estimate (as a consequence of [48, Theorem 4.1]):

‖Ĩhφ‖
W

1
s +ε,s(Ω)

6Cε‖φ‖W 1
s +ε,s(Ω)

, ∀φ ∈W
1
s +ε,s(Ω).

By denoting ϕ = φ − Ĩhφ , we have ϕ ∈W 1,s
0 (Ω), φh− Ĩhφ ∈ S̊h, and (3.27) can be rewritten as{

(∂t(ϕ− (φh− Ĩhφ)),vh)+(∇(ϕ− (φh− Ĩhφ)),∇vh) = 0, ∀vh ∈ S̊h, ∀ t ∈ (0,T ],

ϕ(0)− (φh(0)− Ĩhφ(0)) = 0 in Ω .

Then
‖Phϕ− (φh− Ĩhφ)‖Lp(0,T ;W 1,s(Ω))

6C‖Phϕ−Rhϕ‖Lp(0,T ;W 1,s(Ω)) (cf. [37, Theorem 1.1, inequality (1.11)])

6Ch−1+ 1
s +ε‖Phϕ−Rhϕ‖

Lp(0,T ;W
1
s +ε,s(Ω))

(inverse inequality)

6Cε h−1+ 1
s +ε | lnh|‖ϕ‖

Lp(0,T ;W
1
s +ε,s(Ω))

(use Lemma 3.5)

=Cε h−1+ 1
s +ε | lnh|‖φ − Ĩhφ‖

Lp(0,T ;W
1
s +ε,s(Ω))

6Cε h−1+ 1
s +ε | lnh|‖φ‖

Lp(0,T ;W
1
s +ε,s(Ω))

, (use stability of Ĩh) (3.30)

and thus (by the triangle inequality)
‖φh− Ĩhφ‖Lp(0,T ;W 1,s(Ω))

6 ‖Phϕ− (φh− Ĩhφ)‖Lp(0,T ;W 1,s(Ω))+‖Phϕ‖Lp(0,T ;W 1,s(Ω))

6Cε h−1+ 1
s +ε | lnh|‖φ‖

Lp(0,T ;W
1
s +ε,s(Ω))

+Ch−(1−
1
s−ε)‖Phϕ‖

Lp(0,T ;W
1
s +ε,s(Ω))

(use (3.30) and the inverse inequality)

6Cε h−1+ 1
s +ε | lnh|‖φ‖

Lp(0,T ;W
1
s +ε,s(Ω))

+Ch−(1−
1
s−ε)‖ϕ‖

Lp(0,T ;W
1
s +ε,s(Ω))

6Cε h−1+ 1
s +ε | lnh|‖φ‖

Lp(0,T ;W
1
s +ε,s(Ω))

(use stability of Ĩh). (3.31)
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Then a triangle inequality yields
‖φh‖Lp(0,T ;W 1,s(Ω))

6 ‖φh− Ĩhφ‖Lp(0,T ;W 1,s(Ω))+‖Ĩhφ‖Lp(0,T ;W 1,s(Ω))

6Cε h−1+ 1
s +ε | lnh|‖φ‖

Lp(0,T ;W
1
s +ε,s(Ω))

+Ch−(1−
1
s−ε)‖Ĩhφ‖

Lp(0,T ;W
1
s +ε,s(Ω))

6Cε h−1+ 1
s +ε | lnh|‖φ‖

Lp(0,T ;W
1
s +ε,s(Ω))

(stability of Ĩh). (3.32)

This proves (3.28). To prove (3.29), we simply note that
‖φ −φh‖Lp(0,T ;Ls(Ω))+h‖φ −φh‖Lp(0,T ;W 1,s(Ω))

= ‖ϕ− (φh− Ĩhφ))‖Lp(0,T ;Ls(Ω))+h‖ϕ− (φh− Ĩhφ))‖Lp(0,T ;W 1,s(Ω))

6C‖ϕ−Phϕ‖Lp(0,T ;Ls(Ω)) (cf. [37, Theorem 1.1])
6Ch‖ϕ‖Lp(0,T ;W 1,s(Ω))

=Ch‖φ − Ĩhφ‖Lp(0,T ;W 1,s(Ω))

6Chk‖φ‖Lp(0,T ;W k,s(Ω)), k = 1,2. (3.33)
This completes the proof. �

4. Proof of Theorem 2.1

Since a 6 u 6 b, it follows that u ∈ L∞(0,T ;L∞(Γ )). Then Lemma 3.2 implies, for q ∈ [2,q0) (which
satisfies the condition of Lemma 3.2),

‖∂ty‖
Lq(0,T ;Ḣ−(2−

1
q +ε),q

(Ω))
+‖y‖

Lq(0,T ;Ḣ
1
q−ε,q

(Ω))

6Cε(‖ f‖
Lq(0,T ;Ḣ−(2−

1
q +ε),q

(Ω))
+‖u‖Lq(0,T ;Lq(Γ )))6Cε , (4.1)

where ε can be arbitrarily small at the expense of enlarging the constant Cε . In particular, this implies
y ∈ Lq(0,T ;Lq(Ω)). (4.2)

Then applying the maximal Lp-regularity (Lemma 3.1) to (2.12) yields
‖∂tz‖Lq(0,T ;Lq(Ω))+‖∆z‖Lq(0,T ;Lq(Ω)) 6C‖y− yd‖Lq(0,T ;Lq(Ω)) 6C. (4.3)

As a result, Lemma 3.3 implies ∂nnnz ∈ Lq(0,T ;W 1− 1
q ,q(Γ ))∩W

1
2

(
1− 1

q

)
,q
(0,T ;Lq(Γ )). Since the Besov

spaces have finite difference characterization [54, Theorem 3.5.3], it follows that the pointwise projec-

tion PUad is bounded on Lq(0,T ;W 1− 1
q ,q(Γ ))∩W

1
2

(
1− 1

q

)
,q
(0,T ;Lq(Γ )) and therefore,

u = PUad(α
−1

∂nnnz) ∈ Lq(0,T ;W 1− 1
q ,q(Γ ))∩W

1
2

(
1− 1

q

)
,q
(0,T ;Lq(Γ )). (4.4)

Then applying Proposition 3.1 to (1.2) yields, for 1 < p6 q and 2q
2q−1 < p < 2q

q−1 ,

‖y‖Lp(0,T ;W 1,q(Ω)) 6C(‖ f‖Lp(0,T ;W−1,q(Ω))+‖u‖
Lp(0,T ;W 1− 1

q ,q
(Γ ))∩W

1
2 (1− 1

p ),q(0,T ;Lq(Γ ))
)6C.

In particular, p = 2 satisfies the condition 2q
2q−1 < p < 2q

q−1 . This completes the proof of Theorem 2.1. �

5. Proof of Theorem 2.2

5.1 Preliminary lemmas

To prove Theorem 2.2, we introduce some technical lemmas in this section. The following standard
estimates for the L2 projection and Ritz projection will be used: for γ ∈ [0,1] and q′0 < s < ∞,

‖Phφ‖Ls(Ω) 6C‖φ‖Ls(Ω) ∀φ ∈ Ls(Ω), (5.1)

‖Phφ −φ‖Ls(Ω) 6Ch2γ‖φ‖Ḣ2γ,s(Ω) ∀φ ∈ Ḣ2γ,s(Ω), γ ∈ [0,1], (5.2)
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‖Phφ −Rhφ‖Ls(Ω)+h‖Phφ −Rhφ‖W 1,s(Ω) 6Ch2‖φ‖Ḣ2,s(Ω) ∀φ ∈ Ḣ2,s(Ω). (5.3)

In the case s = 2, the stability (5.1) is a consequence of the definition of the L2 projection Ph. In [52,
Lemma 6.1] the stability (5.1) was proved for s = ∞. Therefore, in the intermediate case 26 s6 ∞, the
stability estimate (5.1) can be obtained by the real interpolation between the two end-point cases s = 2
and s = ∞. In the case 1 < s6 2, the stability estimate (5.1) follows from a duality argument.

The error estimate (5.2) is an immediate consequence of the stability estimate (5.1).
In [47] it was proved that if the Ritz projection is bounded in the W 1,s norm for 26 s < ∞ then the

error estimate (5.3) holds. Such W 1,s boundedness of the Ritz projection, with 2 6 s < ∞, was proved
for convex polygons and polyhedra in [47] and [22] (where s = ∞ was proved and 2 6 s < ∞ follows
from real interpolation), respectively. In the case q′0 < s 6 2, (5.3) follows from a duality argument by
using the estimate (2.5) for 26 q < q0.

LEMMA 5.1 For γ ∈ [0,1] and q′0 < s < ∞, the following estimate holds:

‖(−∆)−γ
φh‖Ls(Ω) 6C‖(−∆h)

−γ
φh‖Ls(Ω), ∀φh ∈ S̊h, (5.4)

‖(−∆h)
γ(Phφ −Rhφ)‖Ls(Ω) 6Ch2−2γ‖φ‖Ḣ2,s(Ω), ∀φ ∈ Ḣ2,s(Ω). (5.5)

where C is a positive constant independent of h. Moreover, for s ∈ [2,q0) there holds
‖(−∆h)

−γ
φh‖Ls(Ω) 6Cγ‖φh‖Lη(s)(Ω), ∀φh ∈ S̊h, (5.6)

where

η(s) =
smax(1, d

2+d/s )

(1− γ)max(1, d
2+d/s )+ γs

< s. (5.7)

Proof. The following proof extends the result of [21, inequality (2.18)] from L2-norm to Ls-norm.
The inverse inequality and (5.3) imply

‖∆h(Phφ −Rhφ)‖Ls(Ω) 6Ch−2‖Phφ −Rhφ‖Ls(Ω) 6C‖φ‖Ḣ2,s(Ω) ∀φ ∈ Ḣ2,s(Ω). (5.8)
Since ∆hRhφ = Ph∆φ , it follows that

‖(−∆h)Phφ‖Ls(Ω) 6 ‖(−∆h)Rhφ‖Ls(Ω)+‖(−∆h)(Phφ −Rhφ)‖Ls(Ω)

= ‖Ph(−∆)φ‖Ls(Ω)+‖(−∆h)(Phφ −Rhφ)‖Ls(Ω)

6C‖φ‖Ḣ2,s(Ω) ∀φ ∈ Ḣ2,s(Ω). (5.9)
The complex interpolation between (5.1) and (5.9) yields

‖(−∆h)
γ Phφ‖Ls(Ω) 6C‖φ‖Ḣ2γ,s(Ω) ∀φ ∈ Ḣ2γ,s(Ω), γ ∈ [0,1]. (5.10)

For γ ∈ [0,1], 1 < s′ < q0 and ζ ∈ Ls′(Ω), we have η = (−∆)−γ ζ ∈ Ḣ2γ,s′(Ω) so that
((−∆)−γ(−∆h)

γ
φh,ζ ) = ((−∆)−γ(−∆h)

γ
φh,(−∆)γ

η)

= ((−∆h)
γ
φh,η)

= (φh,(−∆h)
γ Phη)

6 ‖φh‖Ls(Ω)‖(−∆h)
γ Phη‖Ls′ (Ω)

6C‖φh‖Ls(Ω)‖η‖Ḣ2γ,s′ (Ω)
(use (5.10))

6C‖φh‖Ls(Ω)‖(−∆)γ
η‖Ls′ (Ω)

6C‖φh‖Ls(Ω)‖ζ‖Ls′ (Ω)
.

By duality, the estimate above implies
‖(−∆)−γ(−∆h)

γ
φh‖Ls(Ω) 6C‖φh‖Ls(Ω), ∀φh ∈ S̊h.

Then substituting φh = (−∆h)
−γ ϕh yields (5.4).

The complex interpolation between (5.3) and (5.8) yields (5.5).
Let ϕh =(−∆h)

−1φh and ϕ =(−∆)−1φh. Then ϕh is the Ritz projection of ϕ under the homogeneous
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Dirichlet boundary condition, satisfying the standard error estimate
‖ϕh−Phϕ‖L2(Ω) 6Ch2‖ϕ‖H2(Ω) 6Ch2‖φh‖L2(Ω),

which implies (using the inverse inequality), for 16 p6 s < q0 such that 2+ d
s >

d
p

‖ϕh−Phϕ‖Ls(Ω) 6Ch
d
s−

d
2 ‖ϕh−Phϕ‖L2(Ω)

6Ch2+ d
s−

d
2 ‖φh‖L2(Ω)

6Ch2+ d
s−

d
2 +

d
2−

d
p ‖φh‖Lp(Ω)

6C‖φh‖Lp(Ω).

Since 2+ d
s >

d
p implies W 2,p(Ω) ↪→ Ls(Ω), it follows that

‖ϕh‖Ls(Ω) 6 ‖ϕh−Phϕ‖Ls(Ω)+‖Phϕ‖Ls(Ω)

6C‖φh‖Lp(Ω)+‖ϕ‖Ls(Ω)

6C‖φh‖Lp(Ω)+C‖ϕ‖W 2,p(Ω)

6C‖φh‖Lp(Ω)+C‖φh‖Lp(Ω)

6C‖φh‖Lp(Ω).

Therefore, for s ∈ [2,q0),
‖(−∆h)

−1
φh‖Ls(Ω) 6C‖φh‖Lp(Ω),

‖φh‖Ls(Ω) 6C‖φh‖Ls(Ω).

By the complex interpolation, we obtain
‖(−∆h)

−γ
φh‖Ls(Ω) 6C‖φh‖Lη(s)(Ω), γ ∈ (0,1),

where 1−γ

s + γ

p = 1
η(s) . By choosing p = max(1, d

2+d/s ) we obtain (5.6). �

LEMMA 5.2 For f ∈ L2(0,T ;Ls′(Ω)) and ϕh ∈ L2(0,T ;Sh(Γ )), with q′0 < s′ < q0, the solution of (3.19)
is well-defined and satisfies the following estimate:

‖yh‖L2(0,T ;Ls′ (Ω))
6C

(
‖ f‖L2(0,T ;Ls′ (Ω))

+‖ϕh‖L2(0,T ;Ls′ (Γ ))

)
. (5.11)

Proof. Since q′0 < s′ < q0 implies q′0 < s < q0, where 1
s +

1
s′ = 1. Therefore we can apply the result

of Lemma 5.1 below.
For any given φh ∈ S̊h, substituting the test function vh = (−∆h)

− 1
2 (1+

1
s +ε)φh ∈ S̊h into (3.20) and

denoting wh = (−∆h)
− 1

2 (1+
1
s +ε)Phyh ∈ S̊h yield

(∂twh,φh)+(∇wh,∇φh)

= ( f ,(−∆h)
− 1

2 (1+
1
s +ε)

φh)− (ϕh,∂
h
nnn (−∆h)

− 1
2 (1+

1
s +ε)

φh)Γ . (5.12)

Clearly, the linear functional ` : S̊h→ R defined by

`(φh) := (ϕh,∂
h
nnn (−∆h)

− 1
2 (1+

1
s +ε)

φh)Γ , ∀φh ∈ S̊h, (5.13)
is bounded based on the following observations.

Let v = ∆−1ηh with ηh = ∆hvh ∈ S̊h. Then
(∇v,∇θh) =−(∆v,θh) =−(ηh,θh) =−(∆hvh,θh) = (∇vh,∇θh), ∀θh ∈ S̊h, (5.14)

which implies that vh = Rhv, where Rh denotes the Ritz projection operator onto S̊h. Then
(∂nnnv,ζh)Γ = (∆v,ζh)+(∇v,∇ζh) = (ηh,ζh)+(∇v,∇ζh), ∀ζh ∈ Sh,

which together with (2.24) implies
(∂ h

nnn vh− P̃h∂nnnv,ζh)Γ = (∇(vh− v),∇ζh), ∀ζh ∈ Sh.

For any ζh ∈ Sh(Γ ), there exists an extension ζ̃ ∈W
1
s +ε,s(Ω) such that

ζ̃ = ζh on Γ and ‖ζ̃‖
W

1
s +ε,s(Ω)

6Cε‖ζh‖W ε,s(Ω).
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Let Ĩh be the Scott-Zhang interpolation operator introduced in [48], which preserves the boundary con-
dition in the sense that

Ĩhφ = φ on Γ if φ |Γ ∈ Sh(Γ ).

Then the function ζ̃h = Ĩhζ̃ ∈ Sh satisfies

ζ̃h = ζh on Γ and ‖ζ̃h‖W 1
s +ε,s(Ω)

6Cε‖ζ̃‖W 1
s +ε,s(Ω)

6Cε‖ζh‖W ε,s(Γ ). (5.15)

Therefore,
|(∂ h

nnn vh− P̃h∂nnnv,ζh)Γ |= |(∇(vh− v),∇ζ̃h)|

6C‖vh− v‖W 1,s(Ω)‖ζ̃h‖W 1,s′ (Ω)

6Ch
1
s +ε‖v‖

Ḣ1+ 1
s +ε,s(Ω)

‖ζ̃h‖W 1,s′ (Ω)
(error estimate for Ritz projection)

6Ch2ε‖v‖
Ḣ1+ 1

s +ε,s(Ω)
‖ζ̃h‖

W
1
s′ +ε,s′

(Ω)
(inverse inequality)

6Ch2ε‖v‖
Ḣ1+ 1

s +ε,s(Ω)
‖ζh‖W ε,s′ (Γ )

(use (5.15))

6Chε‖v‖
Ḣ1+ 1

s +ε,s(Ω)
‖ζh‖Ls′ (Γ )

. (inverse inequality on the boundary)

By duality, we see that
‖∂ h

nnn vh− P̃h∂nnnv‖Ls(Γ ) 6C‖v‖
Ḣ1+ 1

s +ε,s(Ω)
,

which implies
‖∂ h

nnn vh‖Ls(Γ ) 6C‖P̃h∂nnnv‖Ls(Γ )+C‖v‖
Ḣ1+ 1

s +ε,s(Ω)

6C‖∂nnnv‖Ls(Γ )+C‖v‖
Ḣ1+ 1

s +ε,s(Ω)

6C‖v‖
Ḣ1+ 1

s +ε,s(Ω)
,

where we have used the stability of P̃h in Ls(Γ ); see Theorem A.1 in Appendix. By substituting vh =

(−∆h)
− 1

2 (1+
1
s +ε)φh, v = (−∆)−1ηh and ηh = (−∆h)

1
2 (1−

1
s−ε)φh into the inequality above, we obtain

‖∂ h
nnn (−∆h)

− 1
2 (1+

1
s +ε)

φh‖Ls(Γ ) 6C‖(−∆)−1
ηh‖Ḣ1+ 1

s +ε,s(Ω)

6C‖(−∆)−
1
2 (1−

1
s−ε)

ηh‖Ls(Ω)

6C‖(−∆)−
1
2 (1−

1
s−ε)(−∆h)

1
2 (1−

1
s−ε)

φh‖Ls(Ω)

6C‖φh‖Ls(Ω) (use Lemma 5.1). (5.16)
Substituting the estimate into (5.13) yields

|`(φh)|6C‖ϕh‖Ls′ (Γ )
‖φh‖Ls(Ω), ∀φh ∈ S̊h.

By the Riesz representation theorem, there exists gh ∈ S̊h such that
`(φh) = (gh,φh), ∀φh ∈ S̊h, and ‖gh‖Ls′ (Ω)

6C‖ϕh‖Ls′ (Γ )
.

Thus equation (5.12) can be equivalently written as

(∂twh,φh)+(∇wh,∇φh) = ((−∆h)
− 1

2 (1+
1
s +ε)Ph f ,φh)− (gh,φh), ∀φh ∈ S̊h. (5.17)

Then the discrete maximal Lp-regularity of parabolic equation (cf. Lemma 3.4 with p = 2) yields
‖∂twh‖L2(0,T ;Ls′ (Ω))

+‖∆hwh‖L2(0,T ;Ls′ (Ω))

6C(‖(−∆h)
− 1

2 (1+
1
s +ε)Ph f‖L2(0,T ;Ls′ (Ω))

+‖gh‖L2(0,T ;Ls′ (Ω))
)

6C(‖ f‖L2(0,T ;Ls′ (Ω))
+‖ϕh‖L2(0,T ;Ls′ (Γ ))

),

which further implies (substituting wh = (−∆h)
− 1

2 (1+
1
s +ε)Phyh)

‖(−∆h)
1
2 (

1
s′−ε)Phyh‖L2(0,T ;Ls′ (Ω))

6C(‖ f‖L2(0,T ;Ls′ (Ω))
+‖ϕh‖L2(0,T ;Ls′ (Γ ))

).
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By choosing ε ∈ (0, 1
s′ ], we obtain
‖Phyh‖L2(0,T ;Ls′ (Ω))

6C(‖ f‖L2(0,T ;Ls′ (Ω))
+‖ϕh‖L2(0,T ;Ls′ (Γ ))

). (5.18)

To remove the operator Ph on the left side of the inequality above, we let ϕ̃h be the extension of ϕh from
Γ to Ω by setting ϕ̃h = 0 at the interior nodes of the triangulation. Then

‖yh‖L2(0,T ;Ls′ (Ω))
6 ‖yh− ϕ̃h‖L2(0,T ;Ls′ (Ω))

+‖ϕ̃h‖L2(0,T ;Ls′ (Ω))

= ‖Ph(yh− ϕ̃h)‖L2(0,T ;Ls′ (Ω))
+‖ϕ̃h‖L2(0,T ;Ls′ (Ω))

6 ‖Phyh‖L2(0,T ;Ls′ (Ω))
+C‖ϕ̃h‖L2(0,T ;Ls′ (Ω))

6C(‖ f‖L2(0,T ;Ls′ (Ω))
+‖ϕh‖L2(0,T ;Ls′ (Γ ))

).

This proves the desired result of Lemma 5.2. �
The proof of the above lemma also implies the following approximation result.

LEMMA 5.3 If q′0 < s < ∞ and z ∈ L2(0,T ;W 2,s(Ω)∩W 1,s
0 (Ω)), then

‖∂nnnz−∂
h
nnn Phz‖L2(0,T ;Ls(Γ )) 6Cε h1− 1

s−ε‖z‖L2(0,T ;W 2,s(Ω)),

where ε can be arbitrarily small.

Proof. We denote by ζ̃h ∈ Sh the extension of a function ζh ∈ Sh(Γ ) to the interior of the domain
Ω by setting ζ̃h = 0 at the interior nodes of the triangulation. Let Ωh,Γ denote the union of boundary
triangles/tetrahedra. Then

‖ζ̃h‖Ls′ (Ω)
= ‖ζ̃h‖Ls′ (Ωh,Γ )

6

(
∑

K j⊂Ωh,Γ

|K j|‖ζ̃h‖s′
L∞(K j)

) 1
s′

6C
(

∑
K j⊂Ωh,Γ

h|∂K j ∩Γ |‖ζh‖s′
L∞(∂K j∩Γ )

) 1
s′

6Ch
1
s′

(
∑

K j⊂Ωh,Γ

|∂K j ∩Γ |‖ζh‖s′
L∞(∂K j∩Γ )

) 1
s′

6Ch
1
s′ ‖ζh‖Ls′ (Γ )

.

From integration by parts and (2.24) we derive

(∂nnnz,ζh)Γ = (∆z, ζ̃h)+(∇z,∇ζ̃h), ∀ζh ∈ Sh(Γ ),

and
(∂ h

nnn Rhz,ζh)Γ = (∆hRhz, ζ̃h)+(∇Rhz,∇ζ̃h)

= (Ph∆z, ζ̃h)+(∇Rhz,∇ζ̃h), ∀ζh ∈ Sh(Γ ),

where we have used the identity Ph∆ = ∆hRh in the last equality. The difference between the two
equations above yields

|(P̃h∂nnnz−∂
h
nnn Rhz,ζh)Γ |

= |(∆z−Ph∆z, ζ̃h)+(∇(z−Rhz),∇ζ̃h)|

6 ‖∆z−Ph∆z‖Ls(Ω)‖ζ̃h‖Ls′ (Ω)
+‖∇(z−Rhz)‖Ls(Ω)‖∇ζ̃h‖Ls′ (Ω)

6C‖z‖W 2,s(Ω)‖ζ̃h‖Ls′ (Ω)
+Ch‖z‖W 2,s(Ω)Ch−1‖ζ̃h‖Ls′ (Ω)

(here (5.3) is used)

6C‖z‖W 2,s(Ω)h
1
s′ ‖ζh‖Ls′ (Γ )

,

which implies (via the duality argument)

‖P̃h∂nnnz−∂
h
nnn Rhz‖Ls(Γ ) 6Ch1− 1

s ‖z‖W 2,s(Ω).



20 of 32

Substituting φh = (−∆h)
1
2 (1+

1
s +ε)(Phz−Rhz) into (5.16) yields

‖∂ h
nnn (Phz−Rhz)‖Ls(Γ ) 6C‖(−∆h)

1
2 (1+

1
s +ε)(Phz−Rhz)‖Ls(Ω)

6Ch1− 1
s−ε‖z‖W 2,s(Ω). (here (5.5) is used)

The last two estimates imply (via a triangle inequality)

‖P̃h∂nnnz−∂
h
nnn Phz‖Ls(Γ ) 6Ch1− 1

s−ε‖z‖W 2,s(Ω).

Moreover, the Ls(Γ ) error estimate for the L2(Γ )-projection operator P̃h (Theorem A.2 in Appendix)
implies

‖P̃h∂nnnz−∂nnnz‖Ls(Γ ) 6Ch1− 1
s ‖∂nnnz‖

W 1− 1
s ,s(Γ )

6Ch1− 1
s ‖z‖W 2,s(Ω),

The last two estimates imply the desired result of Lemma 5.3. �

5.2 Preliminary estimates for uh

Before presenting error estimates for the numerical solutions, we present some rough preliminary esti-
mates for uh.

First, the truncation (2.27) implies that a6 uh 6 b and thus
‖uh‖L∞(0,T ;L∞(Γ )) 6C. (5.19)

Second, by the inverse inequality, we have

‖uh‖
L2(0,T ;H

1
2 (Γ ))

6Ch−
1
2 ‖uh‖L2(0,T ;L2(Γ )) 6Ch−

1
2 . (5.20)

Third, to estimate ‖uh‖
H

1
4 (0,T ;L2(Γ ))

, we denote by ζ̃h ∈ Sh the extension of a function ζh ∈ Sh(Γ ) to

the interior of the domain Ω by setting ζ̃h = 0 at the interior nodes of the triangulation. Then

‖ζ̃h‖Ls(Ω) 6Ch
1
s ‖ζh‖Ls(Γ ), ∀16 s6 ∞.

From (2.24) we see that for vh ∈ S̊h

|(∂ h
nnn vh,ζh)Γ |6 ‖∆hvh‖L2(Ω)‖ζ̃h‖L2(Ω)+‖∇vh‖L2(Ω)‖∇ζ̃h‖L2(Ω)

6Ch−2‖vh‖L2(Ω)‖ζ̃h‖L2(Ω)

6Ch−
3
2 ‖vh‖L2(Ω)‖ζh‖L2(Γ ),

which implies (via the duality argument)

‖∂ h
nnn vh‖L2(Γ ) 6Ch−

3
2 ‖vh‖L2(Ω).

Therefore,
‖∂t∂

h
nnn zh‖L2(0,T ;L2(Γ )) = ‖∂

h
nnn ∂tzh‖L2(0,T ;L2(Γ ))

6Ch−
3
2 ‖∂tzh‖L2(0,T ;L2(Ω))

6Ch−
3
2 ‖yh− yd‖L2(0,T ;L2(Ω)) (use Lemma 3.4)

6Ch−
3
2 (‖P̃huh‖L2(0,T ;L2(Γ ))+‖ f‖L2(0,T ;L2(Ω))+‖yd‖L2(0,T ;L2(Ω)))

(use Lemma 5.2 with s′ = 2)

6Ch−
3
2 .

From the expression (2.27) we further derive

‖∂tuh‖L2(0,T ;L2(Γ )) 6C‖∂t∂
h
nnn zh‖L2(0,T ;L2(Γ )) 6Ch−

3
2 .

Thus

‖uh‖
H

1
4 (0,T ;L2(Γ ))

6 ‖uh‖
3
4
L2(0,T ;L2(Γ ))

‖uh‖
1
4
H1(0,T ;L2(Γ ))

6Ch−
3
8 . (5.21)
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Overall, we have

‖uh‖
H

1
4 (0,T ;L2(Γ ))

+‖uh‖
L2(0,T ;H

1
2 (Γ ))

6Ch−
1
2 . (5.22)

This estimate will be used in the next subsection.

5.3 Error estimate for the control in L2(0,T ;L2(Γ ))

We present an error estimate for ‖u−uh‖L2(0,T ;L2(Γ )). Note that uh may not belong to Sh(Γ ), and

α‖u−uh‖2
L2(0,T ;L2(Γ )) =

∫ T

0
(αu,u−uh)Γ dt−

∫ T

0
(αuh,u−uh)Γ dt

6
∫ T

0
(y− yd ,y[uh]− y)dt +

∫ T

0
(yh− yd ,yh[P̃hu]− yh)dt, (5.23)

where the last inequality follows substituting v = uh and vh = u in (2.13) and (2.22), respectively. From
the inequality above we further derive (by inserting some intermediate terms)

α‖u−uh‖2
L2(0,T ;L2(Γ )) 6−

∫ T

0
(y− yh,y− yh)dt +

∫ T

0
(y− yh,y− yh[P̃hu])dt

−
∫ T

0
(y− yd ,y− y[uh]− (yh[P̃hu]− yh))dt, (5.24)

this in turn gives

α‖u−uh‖2
L2(0,T ;L2(Γ ))+

1
2
‖y− yh‖2

L2(0,T ;L2(Ω))

6
1
2
‖y− yh[P̃hu]‖2

L2(0,T ;L2(Ω))−
∫ T

0
(y− yd ,y− y[uh]− (yh[P̃hu]− yh))dt. (5.25)

It follows from (2.12) that∫ T

0
(y− yd ,y− y[uh]− (yh[P̃hu]− yh))dt

=
∫ T

0

∫
Ω

(−∂tz−∆z)(y− y[uh]− (yh[P̃hu]− yh))dt

=−
∫ T

0
(∂nnnz,u−uh− P̃h(u−uh))Γ dt (integration by parts)

+
∫ T

0
(∂t(y− y[uh]),z)+(∇(y− y[uh]),∇z)dt

−
∫ T

0
(∂t(yh[P̃hu]− yh),z)+(∇(yh[P̃hu]− yh),∇z)dt

=−
∫ T

0
(∂nnnz,u−uh− P̃h(u−uh))Γ dt (use ∂t(y− y[uh])−∆(y− y[uh]) = 0)

−
∫ T

0
(∂t(yh[P̃hu]− yh),z)+(∇(yh[P̃hu]− yh),∇z)dt

=−
∫ T

0
(∂nnnz,u−uh− P̃h(u−uh))Γ dt

−
∫ T

0
(∂t(yh[P̃hu]− yh),z−Phz)+(∇(yh[P̃hu]− yh),∇(z−Phz))dt

:= J1 + J2, (5.26)
where

J1 =−
∫ T

0
(∂nnnz,u−uh− P̃h(u−uh))Γ dt

=−
∫ T

0
(∂nnnz− P̃h∂nnnz,u−uh− P̃h(u−uh))Γ dt
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=−
∫ T

0
(∂nnnz− P̃h∂nnnz,u−uh)Γ dt

6 ‖u−uh‖L2(0,T ;L2(Γ ))‖∂nnnz− P̃h∂nnnz‖L2(0,T ;L2(Γ ))

6C‖u−uh‖L2(0,T ;L2(Γ ))‖∂nnnz− P̃h∂nnnz‖L2(0,T ;Lq(Γ ))

6Ch1−1/q‖u−uh‖L2(0,T ;L2(Γ ))‖∂nnnz‖
L2(0,T ;W 1− 1

q ,q
(Γ ))

6Ch1−1/q‖u−uh‖L2(0,T ;L2(Γ ))‖z‖L2(0,T ;W 2,q(Ω))

6Ch1−1/q‖u−uh‖L2(0,T ;L2(Γ )), (5.27)
where q can be an arbitrary number between 2 and q0.

To estimate J2, we note that yh[P̃hu]− yh satisfies the following equation in view of (2.19):
(∂t(yh[P̃hu]− yh),vh)+(∇(yh[P̃hu]− yh),∇vh) = 0 ∀vh ∈ S̊h t ∈ (0,T ],

(yh[P̃hu]− yh)(t) = P̃h(u−uh) on Γ × (0,T ],

(yh[P̃hu]− yh)(0) = 0 in Ω .

(5.28)

Let φh = yh[P̃hu]− yh and φ = y[P̃hu]− y(P̃huh), and denote ϕ̃h as the extension of P̃h(u− uh) to the
interior of the domain Ω by setting ϕ̃h = 0 at the interior nodes of the triangulation. Then, denoting by
K the simplicies adjacent to the boundary Γ , we have

‖ϕ̃h‖q′

Lq′ (Ω)
= ∑

K∈K
‖ϕ̃h‖q′

Lq′ (K)

6 ∑
K∈K

|K|‖ϕ̃h‖q′

L∞(K)
(|K| denotes the area of the simplex K)

= ∑
K∈K

|K|‖ϕ̃h‖q′

L∞(K∩Γ )
(because ϕ̃h is zero at the interior nodes)

6 ∑
K∈K

|K|h−(d−1)‖ϕ̃h‖q′

Lq′ (K∩Γ )
(inverse inequality, dimension of Γ is d−1)

6Ch‖ϕ̃h‖q′

Lq′ (Γ )
(here |K|6Chd is used),

which implies

‖ϕ̃h‖Lq′ (Ω)
6Ch

1
q′ ‖ϕ̃h‖Lq′ (Γ )

.

Then φh− ϕ̃h ∈ S̊h (with zero boundary condition) and therefore
‖φh−Phφh‖L2(0,T ;Lq′ (Ω))

6 ‖(φh− ϕ̃h)−Ph(φh− ϕ̃h)‖L2(0,T ;Lq′ (Ω))
+‖ϕ̃h−Phϕ̃h‖L2(0,T ;Lq′ (Ω))

(triangle inequality)

6Ch‖φh− ϕ̃h‖L2(0,T ;W 1,q′ (Ω))
+C‖ϕ̃h‖L2(0,T ;Lq′ (Ω))

(since φh− ϕ̃h = 0 on Γ )

6Ch‖φh‖L2(0,T ;W 1,q′ (Ω))
+Ch‖ϕ̃h‖L2(0,T ;W 1,q′ (Ω))

+C‖ϕ̃h‖L2(0,T ;Lq′ (Ω))

6Ch‖φh‖L2(0,T ;W 1,q′ (Ω))
+C‖ϕ̃h‖L2(0,T ;Lq′ (Ω))

(inverse inequality)

6Ch‖φh‖L2(0,T ;W 1,q′ (Ω))
+Ch

1
q′ ‖P̃h(u−uh)‖L2(0,T ;Lq′ (Γ ))

6Ch‖φh‖L2(0,T ;W 1,q′ (Ω))
+Ch

1
q′ ‖u−uh‖L2(0,T ;Lq′ (Γ ))

. (5.29)

Therefore, we have

J2 =
∫ T

0
(∂tφh,z−Phz)+(∇φh,∇(z−Phz))dt

=−
∫ T

0
(φh,∂t(z−Phz))+(∇φh,∇(z−Phz))dt
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=−
∫ T

0
(φh−Phφh,∂tz−Ph∂tz)+(∇φh,∇(z−Phz))dt

6 ‖φh−Phφh‖L2(0,T ;Lq′ (Ω))
‖∂tz−Ph∂tz‖L2(0,T ;Lq(Ω))

+‖φh‖L2(0,T ;W 1,q′ (Ω))
‖z−Phz‖L2(0,T ;W 1,q(Ω))

6 ‖φh−Phφh‖L2(0,T ;Lq′ (Ω))
‖∂tz‖L2(0,T ;Lq(Ω))

+Ch‖φh‖L2(0,T ;W 1,q′ (Ω))
‖z‖L2(0,T ;W 2,q(Ω))

6C‖φh−Phφh‖L2(0,T ;Lq′ (Ω))
+Ch‖φh‖L2(0,T ;W 1,q′ (Ω))

6Ch‖φh‖L2(0,T ;W 1,q′ (Ω))
+Ch

1
q′ ‖u−uh‖L2(0,T ;Lq′ (Γ ))

(using (5.29) here)

6Cε h
1
q′+ε | lnh|‖φ‖

L2(0,T ;Ḣ
1
q′ +ε,q′

(Ω))
+Ch

1
q′ ‖u−uh‖L2(0,T ;Lq′ (Γ ))

(using (3.28) of Lemma 3.6)

6Ch
1
q′+ε | lnh|‖φ‖1−θε

L2(0,T ;Ḣ
1
q′ −ε,q′

(Ω))

‖φ‖θε

L2(0,T ;W 1,q′ (Ω))
+Ch

1
q′ ‖u−uh‖L2(0,T ;Lq′ (Γ ))

(use interpolation inequality, where θε =
2ε

1− 1
q′+ε

)

6Ch
1
q′+ε | lnh|‖φ‖1−θε

L2(0,T ;H
1
q′ −ε

(Ω))

‖φ‖θε

L2(0,T ;H1(Ω))
+Ch

1
q′ ‖u−uh‖L2(0,T ;L2(Γ ))

(since q′ < 2)

6Ch
1
q′+ε | lnh|‖P̃hu− P̃huh‖1−θε

L2(0,T ;L2(Γ ))
‖y[P̃hu]− y(P̃huh)‖θε

L2(0,T ;H1(Ω))

+Ch
1
q′ ‖u−uh‖L2(0,T ;L2(Γ )) (use Lemma 3.2 with s = 2)

6Ch
1
q′+ε | lnh|‖u−uh‖1−θε

L2(0,T ;L2(Γ ))
‖P̃hu− P̃huh‖θε

L2(0,T ;H
1
2 (Γ ))∩H

1
2 (0,T ;L2(Γ ))

+Ch
1
q′ ‖u−uh‖L2(0,T ;L2(Γ )) (use Proposition 3.1 with p = q = 2)

6Ch
1
q′+ε | lnh|‖u−uh‖1−θε

L2(0,T ;L2(Γ ))
‖u−uh‖θε

L2(0,T ;H
1
2 (Γ ))∩H

1
2 (0,T ;L2(Γ ))

+Ch
1
q′ ‖u−uh‖L2(0,T ;L2(Γ )) (stability of the L2 projection P̃h on Γ )

6Ch
1
q′+ε− θε

2 | lnh|‖u−uh‖1−θε

L2(0,T ;L2(Γ ))
+Ch

1
q′ ‖u−uh‖L2(0,T ;L2(Γ )), (5.30)

where we have used the regularity of u in Theorem 2.1 and (5.22) in the last inequality.
It remains to estimate the term ‖y− yh[P̃hu]‖2

L2(0,T ;L2(Ω))
in (5.25). From the triangle inequality we

derive
‖y− yh[P̃hu]‖L2(0,T ;L2(Ω)) 6 ‖y−Phy‖L2(0,T ;L2(Ω))+‖Phy−Phy[P̃hu]‖L2(0,T ;L2(Ω))

+‖Phy[P̃hu]− yh[P̃hu]‖L2(0,T ;L2(Ω))

6Ch‖y‖L2(0,T ;H1(Ω))+‖y− y[P̃hu]‖L2(0,T ;L2(Ω))

+‖Phy[P̃hu]− yh[P̃hu]‖L2(0,T ;L2(Ω))

6Ch‖y‖L2(0,T ;H1(Ω))+C‖u− P̃hu‖L2(0,T ;L2(Γ )) (use Lemma 3.2 with s = 2)

+‖Phy[P̃hu]− yh[P̃hu]‖L2(0,T ;L2(Ω))

6Ch‖y‖L2(0,T ;W 1,q(Ω))+Ch1− 1
q ‖u‖

L2(0,T ;W 1− 1
q ,q

(Γ ))
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+‖Phy[P̃hu]− yh[P̃hu]‖L2(0,T ;L2(Ω))

6Ch1− 1
q +‖Phy[P̃hu]− yh[P̃hu]‖L2(0,T ;L2(Ω)). (5.31)

To estimate ‖Phy[P̃hu]− yh[P̃hu]‖L2(0,T ;L2(Ω)), we note that y[P̃hu] and yh[P̃hu] satisfy the following error
equation: 

(∂t(y[P̃hu]− yh[P̃hu]),vh)+(∇(y[P̃hu]− yh[P̃hu]),∇vh) = 0 ∀vh ∈ S̊h,

y[P̃hu]− yh[P̃hu] = 0 on Γ × (0,T ),

y[P̃hu]− yh[P̃hu] = 0 at t = 0.

(5.32)

Then the spatially discrete maximal Lp-regularity implies (cf. Lemma 3.6 with p = s = 2)
‖Phy[P̃hu]− yh[P̃hu]‖L2(0,T ;L2(Ω))

6Ch‖y[P̃hu]‖L2(0,T ;H1(Ω))

6Ch(‖P̃hu‖
H

1
4 (0,T ;L2(Γ ))∩L2(0,T ;H

1
2 (Γ ))

+‖ f‖L2(0,T ;L2(Ω)))

(use Proposition 3.1 with p = s = 2)

6Ch(‖P̃hu‖
H

1
4 (0,T ;L2(Γ ))∩L2(0,T ;W 1− 1

q ,q
(Γ ))

+‖ f‖L2(0,T ;L2(Ω))) (since q > 2 and 1− 1
q > 1

2 )

6Ch(‖u‖
H

1
4 (0,T ;L2(Γ ))∩L2(0,T ;W 1− 1

q ,q
(Γ ))

+‖ f‖L2(0,T ;L2(Ω)))

6Ch, (5.33)
where the last inequality uses the regularity result in Theorem 2.1, and the second to last inequality uses
the fact that the projection operator P̃h is stable in both L2(Γ ) and W 1− 1

q ,q(Γ ) for q > 2 (see Theorem
A.3 in Appendix). By substituting the last estimate into (5.31), we obtain

‖y− yh[P̃hu]‖L2(0,T ;L2(Ω)) 6Ch1− 1
q . (5.34)

Then substituting (5.27), (5.30) and (5.34) into (5.25) yields
‖u−uh‖2

L2(0,T ;L2(Γ ))

6Ch1− 1
q ‖u−uh‖L2(0,T ;L2(Γ ))+Cε | lnh|h1− 1

q+ε− θε
2 ‖u−uh‖1−θε

L2(0,T ;L2(Γ ))
, (5.35)

which further implies (combined with (5.25))

‖u−uh‖L2(0,T ;L2(Γ ))+‖y− yh‖L2(0,T ;L2(Ω)) 6Cε | lnh|
1

1+θε h1− 1
q−εβε , (5.36)

where

βε =
3− 3

q − ε

1
q +3ε

6C,

and ε can be arbitrarily small at the expense of enlarging the constant Cε .
Let zh[y](t) ∈ S̊h, t ∈ [0,T ] be the solution of the following auxiliary problem

− (∂tzh[y],vh)+(∇vh,∇zh[y]) = (y− yd ,vh) ∀vh ∈ S̊h, ∀ t ∈ (0,T ],
zh[y] = 0 on Γ × (0,T ],
zh[y] = 0 at t = T.

(5.37)

Then standard a priori error estimate for semi-discrete finite element approximation of parabolic equa-
tion implies

‖z− zh[y]‖L2(0,T ;H1(Ω)) 6Ch‖y− yd‖L2(0,T ;L2(Ω)) 6Ch. (5.38)
Therefore,

‖z− zh‖L2(0,T ;H1(Ω))

6 ‖z− zh[y]‖L2(0,T ;H1(Ω))+‖zh[y]− zh‖L2(0,T ;H1(Ω))

6Ch+‖y− yh‖L2(0,T ;L2(Ω)) (use Lemma 3.4 with p = s = 2)
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6Cε | lnh|
1

1+θε h1− 1
q−εβε (use (5.36)). (5.39)

This proves
‖u−uh‖L2(0,T ;L2(Γ ))+‖y− yh‖L2(0,T ;L2(Ω))+‖z− zh‖L2(0,T ;H1(Ω))

6Cε | lnh|
1

1+θε h1−1/q−εβε .

Since q ∈ [2,q0) can be arbitrary and ε can be arbitrarily small in the inequality above, it follows that
for arbitrary given q ∈ [2,q0) the following estimate holds:

‖u−uh‖L2(0,T ;L2(Γ ))+‖y− yh‖L2(0,T ;L2(Ω))+‖z− zh‖L2(0,T ;H1(Ω)) 6Ch1− 1
q . (5.40)

5.4 Error estimate for the control in L2(0,T ;Lq0(Γ ))

It remains to improve the norms of (5.40) to the norms of (2.28). To this end, we consider the case
q ∈ [2,q0).

Note that
∂t(Phz− zh)+∆h(Phz− zh) = ∆h(Phz−Rhz)−Ph(y− yh) for t ∈ [0,T ),

Phz = zh = 0 on Γ × [0,T ),
Phz = zh = 0 at t = T.

(5.41)

For γ > 0, multiplying the above equation by (−∆h)
−γ and denoting vh = (−∆h)

−γ(Phz− zh), we obtain
∂tvh +∆hvh =−(−∆h)

1−γ(Phz−Rhz)− (−∆h)
−γ Ph(y− yh) for t ∈ [0,T ),

vh = 0 on Γ × [0,T ),
vh = 0 at t = T.

By applying the maximal Lp-regularity (Lemma 3.4) to the (backward) equation above, we obtain
‖(−∆h)vh‖L2(0,T ;Lq(Ω)) 6C‖− (−∆h)

1−γ(Phz−Rhz)− (−∆h)
−γ Ph(y− yh)‖L2(0,T ;Lq(Ω))

6C‖(−∆h)
1−γ(Phz−Rhz)‖L2(0,T ;Lq(Ω))+C‖Ph(y− yh)‖L2(0,T ;Lη(q)(Ω)),

where we have used the triangle inequality and (5.6), with some η(q)< q. By choosing γ = 1
2 (1−

1
q−ε)

in the inequality above, we obtain

‖(−∆h)
1
2 (1+

1
q+ε)(Phz− zh)‖L2(0,T ;Lq(Ω))

6C‖(−∆h)
1
2 (1+

1
q+ε)(Phz−Rhz)‖L2(0,T ;Lq(Ω))+C‖Ph(y− yh)‖L2(0,T ;Lη(q)(Ω))

6Ch−(1+
1
q+ε)‖Phz−Rhz‖L2(0,T ;Lq(Ω))+C‖Ph(y− yh)‖L2(0,T ;Lη(q)(Ω)) (inverse inequality)

6Ch1− 1
q−ε‖z‖L2(0,T ;Ḣ2,q(Ω))+C‖Ph(y− yh)‖L2(0,T ;Lη(q)(Ω)) ((5.3) is used here)

6Ch1− 1
q−ε +C‖y− yh‖L2(0,T ;Lη(q)(Ω)), (5.42)

where we have used the stability of Ph in Lη(q)(Ω) and the regularity of z in Theorem 2.1 (note that

Ḣ2,q(Ω) =W 2,q(Ω)∩W 1,q
0 (Ω)). Then (5.16) implies (substituting φh = (−∆h)

1
2 (1+

1
q+ε)(Phz− zh) and

setting s = q)

‖∂ h
nnn (Phz− zh)‖Lq(Γ ) 6C‖(−∆h)

1
2 (1+

1
q+ε)(Phz− zh)‖Lq(Ω).

Thus
‖∂nnnz−∂

h
nnn zh‖L2(0,T ;Lq(Γ ))

6 ‖∂nnnz−∂
h
nnn Phz‖L2(0,T ;Lq(Γ ))+‖∂

h
nnn (Phz− zh)‖L2(0,T ;Lq(Γ ))

6 ‖∂nnnz−∂
h
nnn Phz‖L2(0,T ;Lq(Γ ))+C‖(−∆h)

1
2 (1+

1
q+ε)(Phz− zh)‖Lq(Ω)
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6Ch1− 1
q−ε‖z‖L2(0,T ;W 2,q(Ω))+Ch1− 1

q−ε +C‖y− yh‖L2(0,T ;Lη(q)(Ω))

(use Lemma 5.3 and (5.42))

6Ch1− 1
q−ε +C‖y− yh‖L2(0,T ;Lη(q)(Ω)), (5.43)

which implies
‖u−uh‖L2(0,T ;Lq(Γ )) 6 ‖∂nnnz−∂

h
nnn zh‖L2(0,T ;Lq(Γ ))

6Ch1− 1
q−ε +C‖y− yh‖L2(0,T ;Lη(q)(Ω)). (5.44)

Note that
y− yh = (y[u]− y[P̃hu])+(y[P̃hu]− yh[P̃hu])+(yh[P̃hu]− yh[P̃huh]), (5.45)

and yh[P̃hu]− yh[P̃huh] ∈ Sh is the solution of
(∂t(yh[P̃hu]− yh[P̃huh]),vh)+(∇(yh[P̃hu]− yh[P̃huh]),∇vh) = 0 ∀vh ∈ S̊h t ∈ (0,T ],

yh[P̃hu]− yh[P̃huh] = P̃hu− P̃huh on Γ × (0,T ],

yh[P̃hu]− yh[P̃huh] = 0 at t = 0.
By using Lemma 5.2 with s′ = q, we obtain

‖yh[P̃hu]− yh[P̃huh]‖L2(0,T ;Lq(Ω)) 6C‖P̃hu− P̃huh‖L2(0,T ;Lq(Γ ))

6C‖u−uh‖L2(0,T ;Lq(Γ ))

6Ch1− 1
q−ε +C‖y− yh‖L2(0,T ;Lη(q)(Ω)), (5.46)

where the last inequality is due to (5.44). The estimate (3.29) of Lemma 3.6 implies
‖y[P̃hu]− yh[P̃hu]‖L2(0,T ;Lq(Ω))

6Ch‖y[P̃hu]‖L2(0,T ;W 1,q(Ω))

6Ch‖P̃hu‖
Ls(0,T ;W 1− 1

q ,q
(Γ ))∩W

1
2 (1− 1

q )(0,T ;Lq(Γ ))
(use Proposition 3.1)

6Ch‖u‖
Lq(0,T ;W 1− 1

q ,q
(Γ ))∩W

1
2 (1− 1

s )(0,T ;Ls(Γ ))

6Ch, (5.47)

where the second to last inequality is due to the stability of P̃hu in W 1− 1
q ,q(Γ ) for q > 2; see Theorem

A.3 in Appendix. By using Lemma 3.2 with s = q (note that q′0 < q < ∞), we have

‖y[u]− y[P̃hu]‖L2(0,T ;Lq(Ω)) 6C‖u− P̃hu‖L2(0,T ;Lq(Γ ))

6Ch1− 1
q ‖u‖

Ls(0,T ;W 1− 1
q ,q

(Γ ))

6Ch1− 1
q . (5.48)

Substituting (5.46)-(5.48) into (5.45) yields

‖y− yh‖L2(0,T ;Lq(Ω)) 6Ch1− 1
q−ε +C‖y− yh‖L2(0,T ;Lη(q)(Ω))

6Ch1− 1
q−ε +C‖y− yh‖1−θ

L2(0,T ;L2(Ω))
‖y− yh‖θ

L2(0,T ;Lq(Ω))(
with θ ∈ (0,1) determined by 1−θ

2 + θ

q = 1
η(q)

)
6Ch1− 1

q−ε +Cε‖y− yh‖L2(0,T ;L2(Ω))+ ε‖y− yh‖L2(0,T ;Lq(Ω)),

where ε can be arbitrarily small at the expense of enlarging the constant Cε . By choosing ε < 1
2 the last

term on the right-hand side can be absorbed by the left-hand side. Then we obtain

‖y− yh‖L2(0,T ;Lq(Ω)) 6Ch1− 1
q−ε +Cε‖y− yh‖L2(0,T ;L2(Ω)) 6Ch1− 1

q−ε . (5.49)
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Moreover
‖z− zh‖L2(0,T ;W 1,q(Ω))

6 ‖z− zh[y]‖L2(0,T ;W 1,q(Ω))+‖zh[y]− zh‖L2(0,T ;W 1,q(Ω))

6Ch+‖y− yh‖L2(0,T ;Lq(Ω)) (use Lemmas 3.4 and 3.6 with p = 2,s = q and k = 2)

6Ch1− 1
s−ε +C‖y− yh‖L2(0,T ;Lη(q)(Ω)) (5.50)

where we have used (5.49) in the last inequality. Then the estimates (5.44), (5.49) and (5.50) imply

‖z− zh‖L2(0,T ;W 1,q(Ω))+‖y− yh‖L2(0,T ;Lq(Ω))+‖u−uh‖L2(0,T ;Lq(Γ )) 6Ch1− 1
q−ε . (5.51)

By the inverse inequality of the finite element space, we have
‖Phz− zh‖L2(0,T ;W 1,q0 (Ω))+‖Ĩhy− yh‖L2(0,T ;Lq0 (Ω))+‖P̃hu−uh‖L2(0,T ;Lq0 (Γ ))

6Ch
1

q0
− 1

q
(
‖Phz− zh‖L2(0,T ;W 1,q(Ω))+‖Ĩhy− yh‖L2(0,T ;Lq(Ω))+‖P̃hu−uh‖L2(0,T ;Lq(Γ ))

)
6Ch

1
q0
− 1

q
(
‖z− zh‖L2(0,T ;W 1,q(Ω))+‖y− yh‖L2(0,T ;Lq(Ω))+‖u−uh‖L2(0,T ;Lq(Γ ))

)
+
(
‖Phz− z‖L2(0,T ;W 1,q(Ω))+‖Ĩhy− y‖L2(0,T ;Lq(Ω))+‖P̃hu−u‖L2(0,T ;Lq(Γ ))

)
6Ch1− 1

q−ε−( 1
q−

1
q0

)
.

Since q ∈ [2,q0) can be arbitrarily close to q0, it follows that

‖Phz− zh‖L2(0,T ;W 1,q0 (Ω))+‖Ĩhy− yh‖L2(0,T ;Lq0 (Ω))+‖P̃hu−uh‖L2(0,T ;Lq0 (Γ )) 6Cε h1− 1
q0
−ε

,

where ε can be arbitrarily small. Then by using the triangle inequality again we obtain (2.28). �

6. Numerical example

In this section we present a numerical example to support our theoretical analysis on the convergence
rates of the numerical solutions.

(0,0) (1,0)

(1,1)(−1,1)

Ω

3
4 π

FIG. 1. The computational domain.

For simplicity we consider an unconstrained problem (which has the same order of convergence as
the constrained problem) defined in a polygonal domain such that the maximum interior angle of the
domain is ω = 3

4 π , as shown in Figure 1. Thus Theorem 2.1 holds with q0 =
2

2−π/ω
= 3. The following

data are chosen:

yd =

{−1 06 x2 < 0.5,
1 otherwise,

f = 1, α = 1, T = 1.

Since the exact solution for this problem is unknown, we use the backward Euler scheme for time
discretization to solve the optimal control problem and take the numerical solution with sufficiently
small time step size τ = 1

4096 and sufficiently large degree of freedom Dof = 193409 as the reference
solution.

We present in Table 1 the convergence order in the L2(0,T ;L3(Γ ))-norm for the control, L2(0,T ;L3(Ω))-
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norm for the state and L2(0,T ;W 1,3(Ω))-norm for the adjoint state, where the numerical solutions with
different Dof are all calculated by using the sufficiently small time step size τ = 1

4096 so that the error of
time discretization is negligible in observing the order of convergence of spatial discretization.

The convergence rates of the numerical solutions are calculated by using the formula

Convergence rate =
2log(‖u−uh‖L2(0,T ;L3)/‖u−uh/2‖L2(0,T ;L3))

log(3121/809)

based on the finest two meshes. We can observe from Table 1 approximately O(h
2
3 ) convergence for the

spatial discretization of the control u and first order convergence for the state y and adjoint state z. This
agrees with the elliptic case [43] and indicates that the error estimate for the control is optimal (up to an
ε order), while the error estimate for the state and its adjoint may still be improved.

Table 1. Error of the control u, the state y and adjoint state z with fixed time steps 4096.
Dof ‖u−uh‖L2(0,T ;L3) ‖y− yh‖L2(0,T ;L3) ‖z− zh‖L2(0,T ;W 1,3)

62 4.5144×10−2 2.4668×10−2 5.1271×10−2

217 2.0256×10−2 8.1889×10−3 2.5602×10−2

809 1.1758×10−2 3.4529×10−3 1.3135×10−2

3121 7.5226×10−3 1.6338×10−3 6.6149×10−3

Convergence rate 0.66 1.10 1.01

7. Conclusion

In this article, we have proved O(h1−1/q0−ε) convergence of the semi-discrete finite element solutions
of the parabolic Dirichlet boundary control problem in convex polygons and polyhedra, where ε can
be arbitrarily small and q0 > 2 depends on the maximal interior angle of the corners and edges of the
domain. To prove this almost optimal-order convergence, we have established several results on the
maximal Lp-regularity of parabolic equations under inhomogeneous Dirichlet boundary conditions in
both continuous and discrete settings. The order of convergence of fully discrete finite element solu-
tions of the parabolic Dirichlet boundary control problem remains open. The analysis for fully discrete
numerical solutions may need further refined Lp estimates of fully discretized parabolic equations.
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Appendix: Stability of P̃h in Lp(Γ ) and W θ ,p(Γ )

If d = 2 then the Lp(Γ ) stability of the projection operator P̃h has been proved in [9] for 16 p6∞. In the
following, we prove the stability of P̃h on Lp(Γ ) in the case d = 3. In this case, Γ is a two-dimensional
surface consisting of a finite number of flat pieces, partitioned into quasi-uniform triangles. Under this
setting, the Lp(Γ )-stability of P̃h can be proved by mimicing the proof of [52, Lemma 6.1] (which is
concerned with the stability of the L2 projection in Lp(Ω) for a planar domain Ω ). The details are given
below.

LEMMA A.1 Let K0 be a triangle on Γ , and let Γ0 be a subregion on Γ disjoint from K0. Then

‖P̃hv‖L2(Γ0)
6Ce−

dist(Γ0 ,K0)
Ch ‖v‖L2(K0)

, if v ∈ L2(Γ ) and supp(v)⊂ K0. (A.1)

Proof. To prove this, we start with R0 =K0 and define R j, j = 0,1, . . . , to be a sequence of sets such that
R j is the union of closed triangles on Γ which are neighbours of ∪k< jRk (but not contained in ∪k< jRk).
By the quasiuniformity of the triangulations, the points in R j have a distance to K0 which is bounded
above and below by a constant times ( j− 1)h. For the set D j = ∪k> jRk, we show that there exists a
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constant κ > 0 such that
‖P̃hv‖2

L2(D j)
6 κ‖P̃hv‖2

L2(R j)
= κ(‖P̃hv‖2

L2(D j−1)
−‖P̃hv‖2

L2(D j)
), j > 1. (A.2)

Then
‖P̃hv‖2

L2(D j)
6

κ

κ +1
‖P̃hv‖2

L2(D j−1)
, j > 1.

Iterating the inequality above yields

‖P̃hv‖2
L2(D j)

6

(
κ

κ +1

) j

‖P̃hv‖2
L2(K0)

, j > 1.

Let C = 2/ ln
(

κ+1
κ

)
. Then κ

κ+1 = e−
2
C and therefore

‖P̃hv‖2
L2(D j)

6 e−
2
C j‖P̃hv‖2

L2(K0)
6 e−

2
C

(
1+

dist(D j ,K0)
Ch

)
‖v‖2

L2(K0)

6Ce−
dist(D j ,K0)

Ch ‖v‖2
L2(K0)

, j > 1.

This proves Lemma A.1. It remains to prove the inequality in (A.2).
Since supp(v)⊂ K0, it follows that (P̃hv,χ) = (v, χ̃) = 0 for all χ ∈ Sh(Γ ) with supp(χ)⊂ D j−1 for

j > 1. We can choose χ̃ ∈ Sh(Γ ) with χ̃ = P̃hv in D j and χ̃ = 0 in Γ \D j−1. Then

0 = (P̃hv, χ̃) = ‖P̃hv‖2
L2(D j)

+
∫

R j

P̃hv χ̃ dx,

which implies
‖P̃hv‖2

L2(D j)
6 ‖P̃hv‖L2(R j)

‖χ̃‖L2(R j)
.

On a triangle K⊂R j, the finite element function χ̃ coincides with Phv at one or two vertices and vanishes
at the remaining vertices. This implies ‖χ̃‖L2(K) 6 κ‖P̃hv‖L2(K) for some constant κ . Substituting this
into the inequality above yields the inequality in (A.2). �

THEOREM A.1
‖P̃hv‖Lp(Γ ) 6C‖v‖Lp(Γ ), ∀v ∈ Lp(Γ ), 16 p6 ∞. (A.3)

Proof. Let K be the set of triangles on Γ . Suppose that P̃hv attains maximum on a triangle K0 ∈K .
For each K ∈K , we define vK ∈ L∞(Γ ) by setting vK = v in K and vK = 0 in Γ \K. Then v = ∑K∈K vK
and therefore, by the triangle inequality,

‖P̃hv‖L∞(Γ ) = ‖P̃hv‖L∞(K0) 6 ∑
K∈K

‖P̃hvK‖L∞(K0) 6 ∑
K∈K

h−1‖P̃hvK‖L2(K0)
,

where we have used the inverse inequality on the triangle K0. By using Lemma A.1, we obtain
‖P̃hv‖L∞(Γ ) 6 ∑

K∈K
h−1‖P̃hvK‖L2(K0)

6 ∑
K∈K

h−1Ce−
dist(K0 ,K)

Ch ‖vK‖L2(K) (Lemma A.1)

6 ∑
K∈K

h−1Ce−
dist(K0 ,K)

Ch Ch‖v‖L∞(K) (Hölder’s inequality and vK = v in K)

6C∑
j

∑
K∈R j

e−
j

C ‖v‖L∞(Γ ) (dist(K0,K)∼ ( j−1)h on R j)

6C∑
j

je−
j

C ‖v‖L∞(Γ ) (the number of triangles in R j is 6C j )

6C‖v‖L∞(Γ ),

where we have used ∑ j je−
j

C 6C
∫

∞

0 se−
s
C ds6C in the last inequality.

The self-adjointness of P̃h and a duality argument would imply ‖P̃hv‖L1(Γ ) 6 C‖v‖L1(Γ ). Then the
real interpolation between the stability estimates in L1(Γ ) and L∞(Γ ) yields the result of Theorem A.1
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for all 16 p6 ∞. �
From the proofs of Lemma A.1 and Theorem A.1 we see that the proof for the Lp(Γ )-stability of P̃h

is the same as the proof for Lp(Ω)-stability of Ph. The nonsmoothness of Γ does not bring any difficulty
into the analysis of Lp(Γ )-stability.

The stability estimate in Theorem A.1 implies, for arbitrary v ∈ Lp(Γ ) and χh ∈ Sh(Γ ),
‖P̃hv− v‖Lp(Γ ) 6 ‖P̃h(v−χh)‖Lp(Γ )+‖χh− v‖Lp(Γ ) 6C‖v−χh‖Lp(Γ ),

which implies
‖P̃hv− v‖Lp(Γ ) 6C min

χh∈Sh(Γ )
‖v−χh‖Lp(Γ ), ∀v ∈ Lp(Γ ), 16 p6 ∞.

This implies the following result.

THEOREM A.2
‖P̃hv− v‖Lp(Γ ) 6Chθ‖v‖W θ ,p(Γ ), θ ∈ [0,1], 16 p6 ∞. (A.4)

For p > 2 the Sobolev embedding W 1,p(Γ ) ↪→ C(Γ ) holds. In this case, it is well known that the
Bramble–Hilbert lemma (this is only based on analysis in a single triangle, therefore still valid on the
surface Γ ) implies

‖Π̃hv‖W 1,p(Γ ) 6C‖v‖W 1,p(Γ ), for p > 2 (A.5)
and

‖P̃hv− Π̃hv‖Lp(Γ ) 6Ch‖v‖W 1,p(Γ ), for p > 2. (A.6)
By using the triangle and inverse inequalities, we have

‖P̃hv‖W 1,p(Γ ) 6 ‖P̃hv− Π̃hv‖W 1,p(Γ )+‖Π̃hv‖W 1,p(Γ ) (triangle inequality)

6Ch−1‖P̃hv− Π̃hv‖Lp(Γ )+‖Π̃hv‖W 1,p(Γ ) (inverse inequality)

6C‖v‖W 1,p(Γ ) for p > 2. (Theorem A.2 and (A.5)-(A.6))

This together with Theorem A.1 imply that P̃h is stable in both Lp(Γ ) and W 1,p(Γ ) for p > 2. The real
interpolation between the Lp(Γ ) and W 1,p(Γ ) stability estimates (together with the end-point cases)
yields the following result.

THEOREM A.3
‖P̃hv‖W θ ,p(Γ ) 6C‖v‖W θ ,p(Γ ) for v ∈W θ ,p(Γ ), p > 2, θ ∈ [0,1]. (A.7)
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[2] T. Apel, M. Mateos, J. Pfefferer and A. Rösch, On the regularity of the solutions of Dirichlet optimal control problems in
polygonal domains, SIAM J. Control Optim., 53 (2015), pp. 3620–3641.
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