Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/89399
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorSchool of Hotel and Tourism Managementen_US
dc.creatorFu, Yen_US
dc.creatorHao, JXen_US
dc.creatorLi, XRen_US
dc.creatorHsu, CHCen_US
dc.date.accessioned2021-03-18T06:32:11Z-
dc.date.available2021-03-18T06:32:11Z-
dc.identifier.issn0047-2875en_US
dc.identifier.urihttp://hdl.handle.net/10397/89399-
dc.language.isoenen_US
dc.publisherSAGE Publicationsen_US
dc.rightsThis is the accepted version of the publication Yu Fu, Jin-Xing Hao, Xiang (Robert) Li, and Cathy H.C. Hsu, Predictive Accuracy of Sentiment Analytics for Tourism: A Metalearning Perspective on Chinese Travel News, Journal of Travel Research (Volume 58 and Issue 4) pp. 666-679. Copyright © 2018 (The Author(s) ). DOI: 10.1177/0047287518772361en_US
dc.subjectChinese travel newsen_US
dc.subjectDesign effectsen_US
dc.subjectMetalearningen_US
dc.subjectPredictive accuracyen_US
dc.subjectSentiment analyticsen_US
dc.titlePredictive accuracy of sentiment analytics for tourism : a metalearning perspective on chinese travel newsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage666en_US
dc.identifier.epage679en_US
dc.identifier.volume58en_US
dc.identifier.issue4en_US
dc.identifier.doi10.1177/0047287518772361en_US
dcterms.abstractSentiment analytics, as a computational method to extract emotion and detect polarity, has gained increasing attention in tourism research. However, issues regarding how to properly apply sentiment analytics are seldom addressed in the tourism literature. This study addresses such methodological challenges by employing the metalearning perspective to examine the design effects on predictive accuracy using a sentiment analysis experiment for Chinese travel news. Our results reveal strong interactions among key design factors of sentiment analytics on predictive accuracy; accordingly, this study formulates a metalearning framework to improve predictive accuracy for computational tourism research. Our study attempts to highlight and improve the methodological relevance and appropriateness of sentiment analytics for future tourism studies.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationJournal of travel research, 1 Apr. 2019, v. 58, no. 4, p. 666-679en_US
dcterms.isPartOfJournal of travel researchen_US
dcterms.issued2019-04-
dc.identifier.scopus2-s2.0-85047403158-
dc.identifier.eissn1552-6763en_US
dc.description.validate202103 bcrcen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumbera0652-n03-
dc.description.fundingSourceRGCen_US
dc.description.fundingText155024/14Ben_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
JTR_Predictive_Accuracy_of_Sentiment_Analytics_for_Tourism.pdfPre-Published version2.17 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

121
Last Week
2
Last month
Citations as of Apr 14, 2025

Downloads

98
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

35
Citations as of Sep 12, 2025

WEB OF SCIENCETM
Citations

30
Citations as of Oct 10, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.