Please use this identifier to cite or link to this item:
http://hdl.handle.net/10397/89361
DC Field | Value | Language |
---|---|---|
dc.contributor | Department of Applied Mathematics | en_US |
dc.creator | Leykekhman, D | en_US |
dc.creator | Li, B | en_US |
dc.date.accessioned | 2021-03-18T03:04:42Z | - |
dc.date.available | 2021-03-18T03:04:42Z | - |
dc.identifier.issn | 0025-5718 | en_US |
dc.identifier.uri | http://hdl.handle.net/10397/89361 | - |
dc.language.iso | en | en_US |
dc.publisher | American Mathematical Society | en_US |
dc.rights | First published in Mathematics of Computation 90 (July 27, 2020) , published by the American Mathematical Society. © 2020 American Mathematical Society. | en_US |
dc.title | Weak discrete maximum principle of finite element methods in convex polyhedra | en_US |
dc.type | Journal/Magazine Article | en_US |
dc.identifier.spage | 1 | en_US |
dc.identifier.epage | 18 | en_US |
dc.identifier.volume | 90 | en_US |
dc.identifier.issue | 327 | en_US |
dc.identifier.doi | 10.1090/mcom/3560 | en_US |
dcterms.abstract | We prove that the Galerkin finite element solution uh of the Laplace equation in a convex polyhedron Ω, with a quasi-uniform tetrahedral partition of the domain and with finite elements of polynomial degree r 1, satisfies the following weak maximum principle: | en_US |
dcterms.abstract | [Abstract not complete, refer to publisher pdf] | en_US |
dcterms.accessRights | open access | en_US |
dcterms.bibliographicCitation | Mathematics of computation, 2021, v. 90, no. 327, p. 1-18 | en_US |
dcterms.isPartOf | Mathematics of computation | en_US |
dcterms.issued | 2021 | - |
dc.identifier.scopus | 2-s2.0-85100076046 | - |
dc.identifier.eissn | 1088-6842 | en_US |
dc.description.validate | 202103 bcvc | en_US |
dc.description.oa | Accepted Manuscript | en_US |
dc.identifier.FolderNumber | a0602-n09 | - |
dc.identifier.SubFormID | 554 | - |
dc.description.fundingSource | RGC | en_US |
dc.description.fundingText | 15300519 | en_US |
dc.description.pubStatus | Published | en_US |
dc.description.oaCategory | Green (AAM) | en_US |
Appears in Collections: | Journal/Magazine Article |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
554.pdf | Pre-Published version | 457.6 kB | Adobe PDF | View/Open |
Page views
104
Last Week
0
0
Last month
Citations as of Apr 14, 2025
Downloads
23
Citations as of Apr 14, 2025
SCOPUSTM
Citations
6
Citations as of May 8, 2025
WEB OF SCIENCETM
Citations
7
Citations as of Oct 10, 2024

Google ScholarTM
Check
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.